IF3D / code /train.py
leobcc
Lineare incremental sampling implemented
4d3bf91
from v2a_model import V2AModel
from lib.datasets import create_dataset
import hydra
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import os
import glob
@hydra.main(config_path="confs", config_name="base")
def main(opt):
pl.seed_everything(42)
print("Working dir:", os.getcwd())
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath="checkpoints/",
filename="{epoch:04d}-{loss}",
save_on_train_epoch_end=True,
save_last=True)
logger = WandbLogger(project=opt.project_name, name=f"{opt.exp}/{opt.run}")
if not opt.model.incremental_sampling:
trainer = pl.Trainer(
gpus=1,
accelerator="gpu",
callbacks=[checkpoint_callback],
max_epochs=8000,
check_val_every_n_epoch=50,
logger=logger,
log_every_n_steps=1,
num_sanity_val_steps=0
)
model = V2AModel(opt)
trainset = create_dataset(opt.dataset.metainfo, opt.dataset.train)
validset = create_dataset(opt.dataset.metainfo, opt.dataset.valid)
if opt.model.is_continue == True:
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
trainer.fit(model, trainset, validset, ckpt_path=checkpoint)
else:
trainer.fit(model, trainset, validset)
else:
# First iteration of training: initial sampling values
trainer = pl.Trainer(
gpus=1,
accelerator="gpu",
callbacks=[checkpoint_callback],
max_epochs=opt.model.epochs_increment_interval,
check_val_every_n_epoch=50,
logger=logger,
log_every_n_steps=1,
num_sanity_val_steps=0
)
model = V2AModel(opt)
trainset = create_dataset(opt.dataset.metainfo, opt.dataset.train)
validset = create_dataset(opt.dataset.metainfo, opt.dataset.valid)
if opt.model.is_continue == True:
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
trainer.fit(model, trainset, validset, ckpt_path=checkpoint)
else:
trainer.fit(model, trainset, validset)
# Further iterations of training: incremental values
for i in range(opt.model.incremental_sampling_steps):
if opt.model.increment_profile == "Squared":
opt.dataset.train.num_sample = int(opt.dataset.train.num_sample*2)
opt.model.ray_sampler.N_samples = int(opt.model.ray_sampler.N_samples/2)
opt.model.ray_sampler.N_samples_eval = int(opt.model.ray_sampler.N_samples_eval/2)
opt.model.ray_sampler.N_samples_extra = int(opt.model.ray_sampler.N_samples_extra/2)
if opt.model.increment_profile == "Linear":
if opt.model.incremental_sampling_steps > 3:
raise ValueError("The training will result in a negative number of samples, please adjust the values in train.py accordingly.")
opt.dataset.train.num_sample = int(opt.dataset.train.num_sample + 1024)
opt.model.ray_sampler.N_samples = int(opt.model.ray_sampler.N_samples - 16)
opt.model.ray_sampler.N_samples_eval = int(opt.model.ray_sampler.N_samples_eval - 32)
opt.model.ray_sampler.N_samples_extra = int(opt.model.ray_sampler.N_samples_extra - 8)
trainer = pl.Trainer(
gpus=1,
accelerator="gpu",
callbacks=[checkpoint_callback],
max_epochs=opt.model.epochs_increment_interval+(i+1)*opt.model.epochs_increment_interval,
check_val_every_n_epoch=50,
logger=logger,
log_every_n_steps=1,
num_sanity_val_steps=0
)
model = V2AModel(opt) # Initialize the model with the new confs values
trainset = create_dataset(opt.dataset.metainfo, opt.dataset.train)
validset = create_dataset(opt.dataset.metainfo, opt.dataset.valid)
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
trainer.fit(model, trainset, validset, ckpt_path=checkpoint)
# Continue the training further
trainer = pl.Trainer(
gpus=1,
accelerator="gpu",
callbacks=[checkpoint_callback],
max_epochs=8000,
check_val_every_n_epoch=50,
logger=logger,
log_every_n_steps=1,
num_sanity_val_steps=0
)
model = V2AModel(opt) # Initialize the model with the new confs values
trainset = create_dataset(opt.dataset.metainfo, opt.dataset.train)
validset = create_dataset(opt.dataset.metainfo, opt.dataset.valid)
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
trainer.fit(model, trainset, validset, ckpt_path=checkpoint)
if __name__ == '__main__':
main()