IF3D / preprocessing /preprocessing_utils.py
leobcc's picture
vid2avatar baseline
6325697
raw
history blame
16.6 kB
"""This module contains simple helper functions and classes for preprocessing """
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
DEFAULT_DTYPE = torch.float32
INVALID_TRANS=np.ones(3)*-1
def smpl_to_pose(model_type='smplx', use_hands=True, use_face=True,
use_face_contour=False, openpose_format='coco25'):
''' Returns the indices of the permutation that maps OpenPose to SMPL
Parameters
----------
model_type: str, optional
The type of SMPL-like model that is used. The default mapping
returned is for the SMPLX model
use_hands: bool, optional
Flag for adding to the returned permutation the mapping for the
hand keypoints. Defaults to True
use_face: bool, optional
Flag for adding to the returned permutation the mapping for the
face keypoints. Defaults to True
use_face_contour: bool, optional
Flag for appending the facial contour keypoints. Defaults to False
openpose_format: bool, optional
The output format of OpenPose. For now only COCO-25 and COCO-19 is
supported. Defaults to 'coco25'
'''
if openpose_format.lower() == 'coco25':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 63, 22, 23, 24, 64,
25, 26, 27, 65, 31, 32, 33, 66, 28,
29, 30, 67], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 68, 37, 38, 39, 69,
40, 41, 42, 70, 46, 47, 48, 71, 43,
44, 45, 72], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 66, 25, 26, 27,
67, 28, 29, 30, 68, 34, 35, 36, 69,
31, 32, 33, 70], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 71, 40, 41, 42, 72,
43, 44, 45, 73, 49, 50, 51, 74, 46,
47, 48, 75], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
# end_idx = 127 + 17 * use_face_contour
face_mapping = np.arange(76, 127 + 17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'coco19':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 2, 5, 8,
1, 4, 7, 25, 26, 27, 28],
dtype=np.int32)
elif model_type == 'smpl_neutral':
return np.array([14, 12, 8, 7, 6, 9, 10, 11, 2, 1, 0, 3, 4, 5, 16, 15,18, 17,],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 57, 22, 23, 24, 58,
25, 26, 27, 59, 31, 32, 33, 60, 28,
29, 30, 61], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 62, 37, 38, 39, 63,
40, 41, 42, 64, 46, 47, 48, 65, 43,
44, 45, 66], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 60, 25, 26, 27,
61, 28, 29, 30, 62, 34, 35, 36, 63,
31, 32, 33, 64], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 65, 40, 41, 42, 66,
43, 44, 45, 67, 49, 50, 51, 68, 46,
47, 48, 69], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
face_mapping = np.arange(70, 70 + 51 +
17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'h36':
if model_type == 'smpl':
return np.array([2,5,8,1,4,7,12,24,16,18,20,17,19,21],dtype=np.int32)
elif model_type == 'smpl_neutral':
#return np.array([2,1,0,3,4,5,12,13,9,10,11,8,7,6], dtype=np.int32)
return [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10]
else:
raise ValueError('Unknown joint format: {}'.format(openpose_format))
def render_trimesh(renderer,mesh,R,T, mode='np'):
verts = torch.tensor(mesh.vertices).cuda().float()[None]
faces = torch.tensor(mesh.faces).cuda()[None]
colors = torch.tensor(mesh.visual.vertex_colors).float().cuda()[None,...,:3]/255
renderer.set_camera(R,T)
image = renderer.render_mesh_recon(verts, faces, colors=colors, mode=mode)[0]
image = (255*image).data.cpu().numpy().astype(np.uint8)
return image
def estimate_translation_cv2(joints_3d, joints_2d, focal_length=600, img_size=np.array([512.,512.]), proj_mat=None, cam_dist=None):
if proj_mat is None:
camK = np.eye(3)
camK[0,0], camK[1,1] = focal_length, focal_length
camK[:2,2] = img_size//2
else:
camK = proj_mat
_, _, tvec,inliers = cv2.solvePnPRansac(joints_3d, joints_2d, camK, cam_dist,\
flags=cv2.SOLVEPNP_EPNP,reprojectionError=20,iterationsCount=100)
if inliers is None:
return INVALID_TRANS
else:
tra_pred = tvec[:,0]
return tra_pred
class JointMapper(nn.Module):
def __init__(self, joint_maps=None):
super(JointMapper, self).__init__()
if joint_maps is None:
self.joint_maps = joint_maps
else:
self.register_buffer('joint_maps',
torch.tensor(joint_maps, dtype=torch.long))
def forward(self, joints, **kwargs):
if self.joint_maps is None:
return joints
else:
return torch.index_select(joints, 1, self.joint_maps)
def transform_mat(R, t):
''' Creates a batch of transformation matrices
Args:
- R: Bx3x3 array of a batch of rotation matrices
- t: Bx3x1 array of a batch of translation vectors
Returns:
- T: Bx4x4 Transformation matrix
'''
# No padding left or right, only add an extra row
return torch.cat([F.pad(R, [0, 0, 0, 1]),
F.pad(t, [0, 0, 0, 1], value=1)], dim=2)
# transform SMPL such that the target camera extrinsic will be met
def transform_smpl(curr_extrinsic, target_extrinsic, smpl_pose, smpl_trans, T_hip):
R_root = cv2.Rodrigues(smpl_pose[:3])[0]
transf_global_ori = np.linalg.inv(target_extrinsic[:3,:3]) @ curr_extrinsic[:3,:3] @ R_root
target_extrinsic[:3, -1] = curr_extrinsic[:3,:3] @ (smpl_trans + T_hip) + curr_extrinsic[:3, -1] - smpl_trans - target_extrinsic[:3,:3] @ T_hip
smpl_pose[:3] = cv2.Rodrigues(transf_global_ori)[0].reshape(3)
smpl_trans = np.linalg.inv(target_extrinsic[:3,:3]) @ smpl_trans # we assume
return target_extrinsic, smpl_pose, smpl_trans
class GMoF(nn.Module):
def __init__(self, rho=1):
super(GMoF, self).__init__()
self.rho = rho
def extra_repr(self):
return 'rho = {}'.format(self.rho)
def forward(self, residual):
squared_res = residual ** 2
dist = torch.div(squared_res, squared_res + self.rho ** 2)
return self.rho ** 2 * dist
class PerspectiveCamera(nn.Module):
FOCAL_LENGTH = 50*128
def __init__(self, rotation=None, translation=None,
focal_length_x=None, focal_length_y=None,
batch_size=1,
center=None, dtype=torch.float32):
super(PerspectiveCamera, self).__init__()
self.batch_size = batch_size
self.dtype = dtype
# Make a buffer so that PyTorch does not complain when creating
# the camera matrix
self.register_buffer('zero',
torch.zeros([batch_size], dtype=dtype))
if focal_length_x is None or type(focal_length_x) == float:
focal_length_x = torch.full(
[batch_size],
self.FOCAL_LENGTH if focal_length_x is None else
focal_length_x,
dtype=dtype)
if focal_length_y is None or type(focal_length_y) == float:
focal_length_y = torch.full(
[batch_size],
self.FOCAL_LENGTH if focal_length_y is None else
focal_length_y,
dtype=dtype)
self.register_buffer('focal_length_x', focal_length_x)
self.register_buffer('focal_length_y', focal_length_y)
if center is None:
center = torch.zeros([batch_size, 2], dtype=dtype)
self.register_buffer('center', center)
if rotation is None:
rotation = torch.eye(
3, dtype=dtype).unsqueeze(dim=0).repeat(batch_size, 1, 1)
rotation = nn.Parameter(rotation, requires_grad=False)
self.register_parameter('rotation', rotation)
if translation is None:
translation = torch.zeros([batch_size, 3], dtype=dtype)
translation = nn.Parameter(translation,
requires_grad=True)
self.register_parameter('translation', translation)
def forward(self, points):
device = points.device
with torch.no_grad():
camera_mat = torch.zeros([self.batch_size, 2, 2],
dtype=self.dtype, device=points.device)
camera_mat[:, 0, 0] = self.focal_length_x
camera_mat[:, 1, 1] = self.focal_length_y
camera_transform = transform_mat(self.rotation,
self.translation.unsqueeze(dim=-1))
homog_coord = torch.ones(list(points.shape)[:-1] + [1],
dtype=points.dtype,
device=device)
# Convert the points to homogeneous coordinates
points_h = torch.cat([points, homog_coord], dim=-1)
projected_points = torch.einsum('bki,bji->bjk',
[camera_transform, points_h])
img_points = torch.div(projected_points[:, :, :2],
projected_points[:, :, 2].unsqueeze(dim=-1))
img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) \
+ self.center.unsqueeze(dim=1)
return img_points
class Renderer():
def __init__(self, principal_point=None, img_size=None, cam_intrinsic = None):
super().__init__()
self.device = torch.device("cuda:0")
torch.cuda.set_device(self.device)
self.cam_intrinsic = cam_intrinsic
self.image_size = img_size
self.render_img_size = np.max(img_size)
principal_point = [-(self.cam_intrinsic[0,2]-self.image_size[1]/2.)/(self.image_size[1]/2.), -(self.cam_intrinsic[1,2]-self.image_size[0]/2.)/(self.image_size[0]/2.)]
self.principal_point = torch.tensor(principal_point, device=self.device).unsqueeze(0)
self.cam_R = torch.from_numpy(np.array([[-1., 0., 0.],
[0., -1., 0.],
[0., 0., 1.]])).cuda().float().unsqueeze(0)
self.cam_T = torch.zeros((1,3)).cuda().float()
half_max_length = max(self.cam_intrinsic[0:2,2])
self.focal_length = torch.tensor([(self.cam_intrinsic[0,0]/half_max_length).astype(np.float32), \
(self.cam_intrinsic[1,1]/half_max_length).astype(np.float32)]).unsqueeze(0)
self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)
self.lights = PointLights(device=self.device,location=[[0.0, 0.0, 0.0]], ambient_color=((1,1,1),),diffuse_color=((0,0,0),),specular_color=((0,0,0),))
self.raster_settings = RasterizationSettings(image_size=self.render_img_size, faces_per_pixel=10, blur_radius=0, max_faces_per_bin=30000)
self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)
self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)
self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)
def set_camera(self, R, T):
self.cam_R = R
self.cam_T = T
self.cam_R[:, :2, :] *= -1.0
self.cam_T[:, :2] *= -1.0
self.cam_R = torch.transpose(self.cam_R,1,2)
self.cameras = SfMPerspectiveCameras(focal_length=self.focal_length, principal_point=self.principal_point, R=self.cam_R, T=self.cam_T, device=self.device)
self.rasterizer = MeshRasterizer(cameras=self.cameras, raster_settings=self.raster_settings)
self.shader = SoftPhongShader(device=self.device, cameras=self.cameras, lights=self.lights)
self.renderer = MeshRenderer(rasterizer=self.rasterizer, shader=self.shader)
def render_mesh_recon(self, verts, faces, R=None, T=None, colors=None, mode='npat'):
'''
mode: normal, phong, texture
'''
with torch.no_grad():
mesh = Meshes(verts, faces)
normals = torch.stack(mesh.verts_normals_list())
front_light = -torch.tensor([0,0,-1]).float().to(verts.device)
shades = (normals * front_light.view(1,1,3)).sum(-1).clamp(min=0).unsqueeze(-1).expand(-1,-1,3)
results = []
# shading
if 'p' in mode:
mesh_shading = Meshes(verts, faces, textures=Textures(verts_rgb=shades))
image_phong = self.renderer(mesh_shading)
results.append(image_phong)
# normal
if 'n' in mode:
normals_vis = normals* 0.5 + 0.5
normals_vis = normals_vis[:,:,[2,1,0]]
mesh_normal = Meshes(verts, faces, textures=Textures(verts_rgb=normals_vis))
image_normal = self.renderer(mesh_normal)
results.append(image_normal)
return torch.cat(results, axis=1)