Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update app_recon.py
Browse files- app_recon.py +20 -4
app_recon.py
CHANGED
@@ -35,7 +35,7 @@ from rembg import remove
|
|
35 |
from segment_anything import sam_model_registry, SamPredictor
|
36 |
from datetime import datetime
|
37 |
import time
|
38 |
-
|
39 |
|
40 |
import sys
|
41 |
sys.path.append("../")
|
@@ -181,7 +181,16 @@ def reconstruction(image, files):
|
|
181 |
_, surface, _, _, _ = bilateral_normal_integration_function(normal_np, mask_output_temp, k=2, K=None, max_iter=100, tol=1e-4, cg_max_iter=5000, cg_tol=1e-3)
|
182 |
ply_path = os.path.join(dir_name, f"{name_base}_recon.ply")
|
183 |
surface.save(ply_path, binary=False)
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
def run_demo():
|
187 |
|
@@ -279,7 +288,7 @@ def run_demo():
|
|
279 |
|
280 |
with gr.Row():
|
281 |
with gr.Column():
|
282 |
-
masked_image = gr.Image(interactive=False, label="Masked foreground.")
|
283 |
with gr.Column():
|
284 |
reconstructed_3d = gr.Model3D(
|
285 |
label = 'Bini post-processed 3D model', height=320, interactive=False,
|
@@ -290,7 +299,14 @@ def run_demo():
|
|
290 |
# interactive=False,
|
291 |
# )
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
|
|
294 |
run_btn.click(fn=depth_normal,
|
295 |
inputs=[input_image, denoising_steps,
|
296 |
ensemble_size,
|
@@ -301,7 +317,7 @@ def run_demo():
|
|
301 |
)
|
302 |
recon_btn.click(fn=reconstruction,
|
303 |
inputs=[input_image, files],
|
304 |
-
outputs=[reconstructed_3d, masked_image]
|
305 |
)
|
306 |
demo.queue().launch(share=True, max_threads=80)
|
307 |
|
|
|
35 |
from segment_anything import sam_model_registry, SamPredictor
|
36 |
from datetime import datetime
|
37 |
import time
|
38 |
+
import trimesh
|
39 |
|
40 |
import sys
|
41 |
sys.path.append("../")
|
|
|
181 |
_, surface, _, _, _ = bilateral_normal_integration_function(normal_np, mask_output_temp, k=2, K=None, max_iter=100, tol=1e-4, cg_max_iter=5000, cg_tol=1e-3)
|
182 |
ply_path = os.path.join(dir_name, f"{name_base}_recon.ply")
|
183 |
surface.save(ply_path, binary=False)
|
184 |
+
|
185 |
+
obj_path = ply_path.replace('ply', 'obj')
|
186 |
+
mesh = trimesh.load(ply_path)
|
187 |
+
T2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
|
188 |
+
mesh.apply_transform(T2)
|
189 |
+
mesh.export(obj_path)
|
190 |
+
|
191 |
+
torch.cuda.empty_cache()
|
192 |
+
|
193 |
+
return obj_path, masked_image, [ply_path]
|
194 |
|
195 |
def run_demo():
|
196 |
|
|
|
288 |
|
289 |
with gr.Row():
|
290 |
with gr.Column():
|
291 |
+
masked_image = gr.Image(interactive=False, height=320, label="Masked foreground.")
|
292 |
with gr.Column():
|
293 |
reconstructed_3d = gr.Model3D(
|
294 |
label = 'Bini post-processed 3D model', height=320, interactive=False,
|
|
|
299 |
# interactive=False,
|
300 |
# )
|
301 |
|
302 |
+
with gr.Row():
|
303 |
+
reconstructed_file = gr.Files(
|
304 |
+
label = "3D Mesh (plyfile)",
|
305 |
+
elem_id = "download",
|
306 |
+
interactive=False,
|
307 |
+
)
|
308 |
|
309 |
+
|
310 |
run_btn.click(fn=depth_normal,
|
311 |
inputs=[input_image, denoising_steps,
|
312 |
ensemble_size,
|
|
|
317 |
)
|
318 |
recon_btn.click(fn=reconstruction,
|
319 |
inputs=[input_image, files],
|
320 |
+
outputs=[reconstructed_3d, masked_image, reconstructed_file]
|
321 |
)
|
322 |
demo.queue().launch(share=True, max_threads=80)
|
323 |
|