Spaces:
Running
on
Zero
Running
on
Zero
# A reimplemented version in public environments by Xiao Fu and Mu Hu | |
import pickle | |
import os | |
import h5py | |
import numpy as np | |
import cv2 | |
import torch | |
import torch.nn as nn | |
import glob | |
def init_image_coor(height, width): | |
x_row = np.arange(0, width) | |
x = np.tile(x_row, (height, 1)) | |
x = x[np.newaxis, :, :] | |
x = x.astype(np.float32) | |
x = torch.from_numpy(x.copy()).cuda() | |
u_u0 = x - width/2.0 | |
y_col = np.arange(0, height) # y_col = np.arange(0, height) | |
y = np.tile(y_col, (width, 1)).T | |
y = y[np.newaxis, :, :] | |
y = y.astype(np.float32) | |
y = torch.from_numpy(y.copy()).cuda() | |
v_v0 = y - height/2.0 | |
return u_u0, v_v0 | |
def depth_to_xyz(depth, focal_length): | |
b, c, h, w = depth.shape | |
u_u0, v_v0 = init_image_coor(h, w) | |
x = u_u0 * depth / focal_length[0] | |
y = v_v0 * depth / focal_length[1] | |
z = depth | |
pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c] | |
return pw | |
def get_surface_normal(xyz, patch_size=5): | |
# xyz: [1, h, w, 3] | |
x, y, z = torch.unbind(xyz, dim=3) | |
x = torch.unsqueeze(x, 0) | |
y = torch.unsqueeze(y, 0) | |
z = torch.unsqueeze(z, 0) | |
xx = x * x | |
yy = y * y | |
zz = z * z | |
xy = x * y | |
xz = x * z | |
yz = y * z | |
patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda() | |
xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2)) | |
yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2)) | |
zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2)) | |
xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2)) | |
xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2)) | |
yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2)) | |
ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch], | |
dim=4) | |
ATA = torch.squeeze(ATA) | |
ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3)) | |
eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1]) | |
ATA = ATA + eps_identity | |
x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2)) | |
y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2)) | |
z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2)) | |
AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4) | |
AT1 = torch.squeeze(AT1) | |
AT1 = torch.unsqueeze(AT1, 3) | |
patch_num = 4 | |
patch_x = int(AT1.size(1) / patch_num) | |
patch_y = int(AT1.size(0) / patch_num) | |
n_img = torch.randn(AT1.shape).cuda() | |
overlap = patch_size // 2 + 1 | |
for x in range(int(patch_num)): | |
for y in range(int(patch_num)): | |
left_flg = 0 if x == 0 else 1 | |
right_flg = 0 if x == patch_num -1 else 1 | |
top_flg = 0 if y == 0 else 1 | |
btm_flg = 0 if y == patch_num - 1 else 1 | |
at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, | |
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] | |
ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, | |
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] | |
# n_img_tmp, _ = torch.solve(at1, ata) | |
n_img_tmp = torch.linalg.solve(ata, at1) | |
n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :] | |
n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select | |
n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True)) | |
n_img_norm = n_img / n_img_L2 | |
# re-orient normals consistently | |
orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0 | |
n_img_norm[orient_mask] *= -1 | |
return n_img_norm | |
def get_surface_normalv2(xyz, patch_size=5): | |
""" | |
xyz: xyz coordinates | |
patch: [p1, p2, p3, | |
p4, p5, p6, | |
p7, p8, p9] | |
surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)] | |
return: normal [h, w, 3, b] | |
""" | |
b, h, w, c = xyz.shape | |
half_patch = patch_size // 2 | |
xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device) | |
xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz | |
# xyz_left_top = xyz_pad[:, :h, :w, :] # p1 | |
# xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9 | |
# xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7 | |
# xyz_right_top = xyz_pad[:, :h, -w:, :] # p3 | |
# xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9 | |
# xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3 | |
xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4 | |
xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6 | |
xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2 | |
xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8 | |
xyz_horizon = xyz_left - xyz_right # p4p6 | |
xyz_vertical = xyz_top - xyz_bottom # p2p8 | |
xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4 | |
xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6 | |
xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2 | |
xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8 | |
xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6 | |
xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8 | |
n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3) | |
n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3) | |
# re-orient normals consistently | |
orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0 | |
n_img_1[orient_mask] *= -1 | |
orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0 | |
n_img_2[orient_mask] *= -1 | |
n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True)) | |
n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8) | |
n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True)) | |
n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8) | |
# average 2 norms | |
n_img_aver = n_img1_norm + n_img2_norm | |
n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True)) | |
n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8) | |
# re-orient normals consistently | |
orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0 | |
n_img_aver_norm[orient_mask] *= -1 | |
n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b] | |
# a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze() | |
# plt.imshow(np.abs(a), cmap='rainbow') | |
# plt.show() | |
return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0)) | |
def surface_normal_from_depth(depth, focal_length, valid_mask=None): | |
# para depth: depth map, [b, c, h, w] | |
b, c, h, w = depth.shape | |
focal_length = focal_length[:, None, None, None] | |
depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1) | |
#depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1) | |
xyz = depth_to_xyz(depth_filter, focal_length) | |
sn_batch = [] | |
for i in range(b): | |
xyz_i = xyz[i, :][None, :, :, :] | |
#normal = get_surface_normalv2(xyz_i) | |
normal = get_surface_normal(xyz_i) | |
sn_batch.append(normal) | |
sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w] | |
if valid_mask != None: | |
mask_invalid = (~valid_mask).repeat(1, 3, 1, 1) | |
sn_batch[mask_invalid] = 0.0 | |
return sn_batch | |