Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import functools | |
import os | |
import shutil | |
import sys | |
import git | |
import gradio as gr | |
import numpy as np | |
import torch as torch | |
from PIL import Image | |
from gradio_imageslider import ImageSlider | |
def process( | |
pipe, | |
path_input, | |
ensemble_size, | |
denoise_steps, | |
processing_res, | |
domain, | |
normal_out_vis=None, | |
path_out_fp32=None, | |
path_out_vis=None, | |
): | |
if path_out_vis is not None: | |
return ( | |
[normal_out_vis, path_out_vis], | |
[normal_out_vis, path_out_fp32, path_out_vis], | |
) | |
input_image = Image.open(path_input) | |
# pipe_out = pipe( | |
# input_image, | |
# ensemble_size=ensemble_size, | |
# denoising_steps=denoise_steps, | |
# processing_res=processing_res, | |
# domain=domain, | |
# batch_size=1 if processing_res == 0 else 0, | |
# show_progress_bar=True, | |
# ) | |
pipe_out = pipe( | |
input_image, | |
denoising_steps=10, | |
ensemble_size=1, | |
processing_res=768, | |
batch_size=0, | |
guidance_scale=3, | |
domain="indoor", | |
show_progress_bar=True, | |
) | |
depth_pred = pipe_out.depth_np | |
depth_colored = pipe_out.depth_colored | |
normal_colored = pipe_out.normal_colored | |
depth_16bit = (depth_pred * 65535.0).astype(np.uint16) | |
path_output_dir = os.path.splitext(path_input)[0] + "_output" | |
os.makedirs(path_output_dir, exist_ok=True) | |
name_base = os.path.splitext(os.path.basename(path_input))[0] | |
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") | |
normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png") | |
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") | |
np.save(path_out_fp32, depth_pred) | |
Image.fromarray(normal_out_vis).save(normal_out_vis) | |
depth_colored.save(path_out_vis) | |
return ( | |
[normal_out_vis, path_out_vis], | |
[normal_out_vis, path_out_fp32, path_out_vis], | |
) | |
def run_demo_server(pipe): | |
process_pipe = functools.partial(process, pipe) | |
os.environ["GRADIO_ALLOW_FLAGGING"] = "never" | |
with gr.Blocks( | |
analytics_enabled=False, | |
title="Marigold Depth Estimation", | |
css=""" | |
#download { | |
height: 118px; | |
} | |
.slider .inner { | |
width: 5px; | |
background: #FFF; | |
} | |
.viewport { | |
aspect-ratio: 4/3; | |
} | |
""", | |
) as demo: | |
gr.Markdown( | |
""" | |
<h1 align="center">GeoWizard</h1> | |
<p align="center"> | |
<a title="Website" href="https://fuxiao0719.github.io/projects/geowizard/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
</a> | |
<a title="arXiv" href="https://arxiv.org/abs/2403.12013" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
</a> | |
<a title="Github" href="https://github.com/fuxiao0719/GeoWizard" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://img.shields.io/github/stars/fuxiao0719/GeoWizard" alt="badge-github-stars"> | |
</a> | |
</p> | |
<p align="justify"> | |
Marigold is the new state-of-the-art depth estimator for images in the wild. | |
Upload your image into the <b>left</b> side, or click any of the <b>examples</b> below. | |
The result will be computed and appear on the <b>right</b> in the output comparison window. | |
<b style="color: red;">NEW</b>: Scroll down to the new 3D printing part of the demo! | |
</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Input Image", | |
type="filepath", | |
) | |
with gr.Accordion("Advanced options", open=False): | |
ensemble_size = gr.Slider( | |
label="Ensemble size", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=1, | |
) | |
denoise_steps = gr.Slider( | |
label="Number of denoising steps", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=10, | |
) | |
processing_res = gr.Radio( | |
[ | |
("Native", 0), | |
("Recommended", 768), | |
], | |
label="Processing resolution", | |
value=768, | |
) | |
domain = gr.Radio( | |
[ | |
("indoor", "indoor"), | |
("outdoor", "outdoor"), | |
("object", "object"), | |
], | |
label="scene type", | |
value='indoor', | |
) | |
input_output_16bit = gr.File( | |
label="Predicted depth (16-bit)", | |
visible=False, | |
) | |
input_output_fp32 = gr.File( | |
label="Predicted depth (32-bit)", | |
visible=False, | |
) | |
input_output_vis = gr.File( | |
label="Predicted depth (red-near, blue-far)", | |
visible=False, | |
) | |
with gr.Row(): | |
submit_btn = gr.Button(value="Compute Depth", variant="primary") | |
clear_btn = gr.Button(value="Clear") | |
with gr.Column(): | |
output_slider = ImageSlider( | |
label="Predicted depth (red-near, blue-far)", | |
type="filepath", | |
show_download_button=True, | |
show_share_button=True, | |
interactive=False, | |
elem_classes="slider", | |
position=0.25, | |
) | |
files = gr.Files( | |
label="Depth outputs", | |
elem_id="download", | |
interactive=False, | |
) | |
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain] | |
blocks_settings = blocks_settings_depth | |
map_id_to_default = {b._id: b.value for b in blocks_settings} | |
inputs = [ | |
input_image, | |
ensemble_size, | |
denoise_steps, | |
processing_res, | |
domain, | |
input_output_16bit, | |
input_output_fp32, | |
input_output_vis, | |
] | |
outputs = [ | |
submit_btn, | |
input_image, | |
output_slider, | |
files, | |
] | |
def submit_depth_fn(*args): | |
out = list(process_pipe(*args)) | |
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out | |
return out | |
submit_btn.click( | |
fn=submit_depth_fn, | |
inputs=inputs, | |
outputs=outputs, | |
concurrency_limit=1, | |
) | |
def clear_fn(): | |
out = [] | |
for b in blocks_settings: | |
out.append(map_id_to_default[b._id]) | |
out += [ | |
gr.Button(interactive=True), | |
gr.Button(interactive=True), | |
gr.Image(value=None, interactive=True), | |
None, None, None, None, None, None, None, | |
] | |
return out | |
clear_btn.click( | |
fn=clear_fn, | |
inputs=[], | |
outputs=blocks_settings + [ | |
submit_btn, | |
input_image, | |
input_output_16bit, | |
input_output_fp32, | |
input_output_vis, | |
output_slider, | |
files, | |
], | |
) | |
demo.queue( | |
api_open=False, | |
).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
) | |
def main(): | |
REPO_URL = "https://github.com/lemonaddie/geowizard.git" | |
CHECKPOINT = "lemonaddie/Geowizard" | |
REPO_DIR = "geowizard" | |
if os.path.isdir(REPO_DIR): | |
shutil.rmtree(REPO_DIR) | |
repo = git.Repo.clone_from(REPO_URL, REPO_DIR) | |
sys.path.append(os.path.join(os.getcwd(), REPO_DIR)) | |
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline | |
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT) | |
try: | |
import xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
except: | |
pass # run without xformers | |
try: | |
import xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
except: | |
pass # run without xformers | |
pipe = pipe.to('cuda') | |
run_demo_server(pipe) | |
if __name__ == "__main__": | |
main() | |