geowizard / utils /surface_normal.py
lemonaddie's picture
Upload 11 files
2e23827 verified
raw
history blame
8.7 kB
# A reimplemented version in public environments by Xiao Fu and Mu Hu
import torch
import numpy as np
import torch.nn as nn
def init_image_coor(height, width):
x_row = np.arange(0, width)
x = np.tile(x_row, (height, 1))
x = x[np.newaxis, :, :]
x = x.astype(np.float32)
x = torch.from_numpy(x.copy()).cuda()
u_u0 = x - width/2.0
y_col = np.arange(0, height) # y_col = np.arange(0, height)
y = np.tile(y_col, (width, 1)).T
y = y[np.newaxis, :, :]
y = y.astype(np.float32)
y = torch.from_numpy(y.copy()).cuda()
v_v0 = y - height/2.0
return u_u0, v_v0
def depth_to_xyz(depth, focal_length):
b, c, h, w = depth.shape
u_u0, v_v0 = init_image_coor(h, w)
x = u_u0 * depth / focal_length
y = v_v0 * depth / focal_length
z = depth
pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
return pw
def get_surface_normal(xyz, patch_size=3):
# xyz: [1, h, w, 3]
x, y, z = torch.unbind(xyz, dim=3)
x = torch.unsqueeze(x, 0)
y = torch.unsqueeze(y, 0)
z = torch.unsqueeze(z, 0)
xx = x * x
yy = y * y
zz = z * z
xy = x * y
xz = x * z
yz = y * z
patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda()
xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2))
yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2))
zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2))
xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2))
xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2))
yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2))
ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch],
dim=4)
ATA = torch.squeeze(ATA)
ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3))
eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1])
ATA = ATA + eps_identity
x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2))
y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2))
z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2))
AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4)
AT1 = torch.squeeze(AT1)
AT1 = torch.unsqueeze(AT1, 3)
patch_num = 4
patch_x = int(AT1.size(1) / patch_num)
patch_y = int(AT1.size(0) / patch_num)
n_img = torch.randn(AT1.shape).cuda()
overlap = patch_size // 2 + 1
for x in range(int(patch_num)):
for y in range(int(patch_num)):
left_flg = 0 if x == 0 else 1
right_flg = 0 if x == patch_num -1 else 1
top_flg = 0 if y == 0 else 1
btm_flg = 0 if y == patch_num - 1 else 1
at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
n_img_tmp, _ = torch.solve(at1, ata)
n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :]
n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select
n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True))
n_img_norm = n_img / n_img_L2
# re-orient normals consistently
orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0
n_img_norm[orient_mask] *= -1
return n_img_norm
def get_surface_normalv2(xyz, patch_size=3):
"""
xyz: xyz coordinates
patch: [p1, p2, p3,
p4, p5, p6,
p7, p8, p9]
surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
return: normal [h, w, 3, b]
"""
b, h, w, c = xyz.shape
half_patch = patch_size // 2
xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz
# xyz_left_top = xyz_pad[:, :h, :w, :] # p1
# xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
# xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7
# xyz_right_top = xyz_pad[:, :h, -w:, :] # p3
# xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9
# xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3
xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4
xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6
xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2
xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8
xyz_horizon = xyz_left - xyz_right # p4p6
xyz_vertical = xyz_top - xyz_bottom # p2p8
xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4
xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6
xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2
xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8
xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6
xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8
n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)
# re-orient normals consistently
orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
n_img_1[orient_mask] *= -1
orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
n_img_2[orient_mask] *= -1
n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)
n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)
# average 2 norms
n_img_aver = n_img1_norm + n_img2_norm
n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
# re-orient normals consistently
orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
n_img_aver_norm[orient_mask] *= -1
n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b]
# a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
# plt.imshow(np.abs(a), cmap='rainbow')
# plt.show()
return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))
def surface_normal_from_depth(depth, focal_length, valid_mask=None):
# para depth: depth map, [b, c, h, w]
b, c, h, w = depth.shape
focal_length = focal_length[:, None, None, None]
depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
xyz = depth_to_xyz(depth_filter, focal_length)
sn_batch = []
for i in range(b):
xyz_i = xyz[i, :][None, :, :, :]
normal = get_surface_normalv2(xyz_i)
sn_batch.append(normal)
sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w]
mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
sn_batch[mask_invalid] = 0.0
return sn_batch
def vis_normal(normal):
"""
Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255]
@para normal: surface normal, [h, w, 3], numpy.array
"""
n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True))
n_img_norm = normal / (n_img_L2 + 1e-8)
normal_vis = n_img_norm * 127
normal_vis += 128
normal_vis = normal_vis.astype(np.uint8)
return normal_vis
def vis_normal2(normals):
'''
Montage of normal maps. Vectors are unit length and backfaces thresholded.
'''
x = normals[:, :, 0] # horizontal; pos right
y = normals[:, :, 1] # depth; pos far
z = normals[:, :, 2] # vertical; pos up
backfacing = (z > 0)
norm = np.sqrt(np.sum(normals**2, axis=2))
zero = (norm < 1e-5)
x += 1.0; x *= 0.5
y += 1.0; y *= 0.5
z = np.abs(z)
x[zero] = 0.0
y[zero] = 0.0
z[zero] = 0.0
normals[:, :, 0] = x # horizontal; pos right
normals[:, :, 1] = y # depth; pos far
normals[:, :, 2] = z # vertical; pos up
return normals
if __name__ == '__main__':
import cv2, os