feat: Sync training infrastructure from main repository
Browse files- app.py +960 -159
- requirements.txt +44 -19
- training/data_loader.py +3 -1
- training/model.py +1 -1
app.py
CHANGED
@@ -1,223 +1,1024 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
OpenLLM Training Space -
|
4 |
|
5 |
-
This
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
Author: Louis Chua Bean Chong
|
9 |
-
License:
|
|
|
|
|
10 |
"""
|
11 |
|
12 |
-
import os
|
13 |
-
import sys
|
14 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from pathlib import Path
|
16 |
|
17 |
-
# Import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
-
from
|
20 |
-
from
|
21 |
-
|
|
|
|
|
|
|
22 |
except ImportError as e:
|
23 |
-
|
24 |
-
print(
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
-
return f"❌
|
53 |
|
54 |
-
def
|
55 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
except Exception as e:
|
77 |
-
return f"❌
|
78 |
|
79 |
-
def
|
80 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
try:
|
82 |
-
#
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
-
return
|
110 |
|
111 |
except Exception as e:
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
model_size = gr.Dropdown(
|
160 |
choices=["small", "medium", "large"],
|
161 |
value="small",
|
162 |
label="Model Size",
|
163 |
-
info="
|
164 |
)
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
minimum=
|
170 |
-
maximum=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
- **integrate_auth_into_training.py**: Integration guide
|
195 |
-
- **setup_hf_space_auth.py**: Space authentication setup
|
196 |
-
- **verify_space_auth.py**: Space verification script
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
|
|
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
return
|
214 |
-
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
-
#
|
218 |
-
interface
|
219 |
-
|
220 |
-
|
221 |
-
server_port=7860,
|
222 |
-
share=False
|
223 |
-
)
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
OpenLLM Training Space Application - Fixed with Uploaded Modules
|
4 |
|
5 |
+
This version imports OpenLLM modules from the uploaded files in the HF Space:
|
6 |
+
- Imports model.py and data_loader.py that were uploaded to the Space
|
7 |
+
- Uses OpenLLM's actual custom model architecture
|
8 |
+
- Compatible with OpenLLM's implementation
|
9 |
+
|
10 |
+
This application provides a complete training interface for OpenLLM models on Hugging Face Spaces.
|
11 |
+
It uses OpenLLM's custom GPTModel architecture instead of Hugging Face Transformers,
|
12 |
+
ensuring compatibility with the actual OpenLLM implementation.
|
13 |
+
|
14 |
+
Key Features:
|
15 |
+
- Real model training using OpenLLM's custom architecture
|
16 |
+
- SentencePiece tokenization for OpenLLM models
|
17 |
+
- Complete training pipeline with progress monitoring
|
18 |
+
- Automatic model saving and uploading to Hugging Face Hub
|
19 |
+
- Gradio 4.44.1 compatible user interface
|
20 |
+
|
21 |
+
Technical Architecture:
|
22 |
+
- Uses OpenLLM's GPTModel class (not Hugging Face Transformers)
|
23 |
+
- Imports custom modules from uploaded files in the Space
|
24 |
+
- Uses sentencepiece.SentencePieceProcessor() for tokenization
|
25 |
+
- Implements OpenLLM's training loop and optimization strategy
|
26 |
+
- Saves checkpoints in OpenLLM's format
|
27 |
|
28 |
Author: Louis Chua Bean Chong
|
29 |
+
License: GPL-3.0
|
30 |
+
Version: 2.1.1
|
31 |
+
Last Updated: 2024
|
32 |
"""
|
33 |
|
|
|
|
|
34 |
import gradio as gr
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
import os
|
38 |
+
import time
|
39 |
+
import math
|
40 |
+
import gc
|
41 |
+
from typing import Dict, Any, Optional
|
42 |
+
import threading
|
43 |
+
from dataclasses import dataclass
|
44 |
from pathlib import Path
|
45 |
|
46 |
+
# Import OpenLLM's custom model architecture from uploaded files
|
47 |
+
# These files were uploaded to the HF Space and contain OpenLLM's actual implementation
|
48 |
+
try:
|
49 |
+
# Import from the uploaded files in the HF Space
|
50 |
+
# model.py contains GPTModel, GPTConfig, and create_model factory function
|
51 |
+
from model import GPTModel, GPTConfig, create_model
|
52 |
+
# data_loader.py contains TextDataLoader for OpenLLM's data loading approach
|
53 |
+
from data_loader import TextDataLoader
|
54 |
+
OPENLLM_AVAILABLE = True
|
55 |
+
print("✅ OpenLLM custom model architecture imported successfully from uploaded files")
|
56 |
+
print(" - GPTModel: Custom PyTorch model architecture")
|
57 |
+
print(" - GPTConfig: Model configuration dataclass")
|
58 |
+
print(" - create_model: Factory function for model creation")
|
59 |
+
print(" - TextDataLoader: Custom data loading implementation")
|
60 |
+
except ImportError as e:
|
61 |
+
print(f"❌ OpenLLM imports failed: {e}")
|
62 |
+
print(" This indicates the uploaded OpenLLM source files are not available")
|
63 |
+
print(" The training functionality will be disabled")
|
64 |
+
OPENLLM_AVAILABLE = False
|
65 |
+
|
66 |
+
# Try to import sentencepiece - CRITICAL for OpenLLM tokenization
|
67 |
+
# OpenLLM uses SentencePiece for tokenization, not Hugging Face tokenizers
|
68 |
+
try:
|
69 |
+
import sentencepiece as spm
|
70 |
+
SENTENCEPIECE_AVAILABLE = True
|
71 |
+
print(f"✅ SentencePiece available: {spm.__version__}")
|
72 |
+
print(" - Required for OpenLLM tokenization")
|
73 |
+
print(" - Used for loading tokenizer.model files")
|
74 |
+
except ImportError:
|
75 |
+
SENTENCEPIECE_AVAILABLE = False
|
76 |
+
print("❌ SentencePiece not available")
|
77 |
+
print(" - This will prevent tokenizer loading")
|
78 |
+
print(" - Training functionality will be limited")
|
79 |
+
|
80 |
+
# Import other dependencies for the complete training pipeline
|
81 |
try:
|
82 |
+
from datasets import load_dataset # For loading training data from HF Hub
|
83 |
+
from huggingface_hub import HfApi, hf_hub_download # For model uploads and downloads
|
84 |
+
DEPENDENCIES_AVAILABLE = True
|
85 |
+
print("✅ Training dependencies available")
|
86 |
+
print(" - datasets: For loading training data")
|
87 |
+
print(" - huggingface_hub: For model uploads/downloads")
|
88 |
except ImportError as e:
|
89 |
+
print(f"❌ Dependencies not available: {e}")
|
90 |
+
print(" - This will prevent dataset loading and model uploading")
|
91 |
+
DEPENDENCIES_AVAILABLE = False
|
92 |
|
93 |
+
@dataclass
|
94 |
+
class TrainingConfig:
|
95 |
+
"""
|
96 |
+
Configuration class for training parameters.
|
97 |
+
|
98 |
+
This dataclass encapsulates all the training hyperparameters and settings
|
99 |
+
that control the OpenLLM training process. It provides a clean interface
|
100 |
+
for passing configuration between different components of the training pipeline.
|
101 |
+
|
102 |
+
Attributes:
|
103 |
+
model_size: Size of the model to train ("small", "medium", "large")
|
104 |
+
max_steps: Maximum number of training iterations
|
105 |
+
learning_rate: Learning rate for the optimizer
|
106 |
+
batch_size: Number of samples per training batch
|
107 |
+
output_dir: Directory to save trained models and checkpoints
|
108 |
+
save_steps: Frequency of checkpoint saving (every N steps)
|
109 |
+
logging_steps: Frequency of progress logging (every N steps)
|
110 |
+
warmup_steps: Number of warmup steps for learning rate scheduling
|
111 |
+
gradient_accumulation_steps: Number of steps to accumulate gradients
|
112 |
+
"""
|
113 |
+
model_size: str
|
114 |
+
max_steps: int
|
115 |
+
learning_rate: float
|
116 |
+
batch_size: int
|
117 |
+
output_dir: str = "./openllm-trained"
|
118 |
+
save_steps: int = 100
|
119 |
+
logging_steps: int = 10
|
120 |
+
warmup_steps: int = 50
|
121 |
+
gradient_accumulation_steps: int = 4
|
122 |
|
123 |
+
class OpenLLMTrainer:
|
124 |
+
"""
|
125 |
+
Complete training implementation using OpenLLM's actual architecture.
|
126 |
+
|
127 |
+
This class handles the entire training pipeline including:
|
128 |
+
- Model loading using OpenLLM's custom GPTModel
|
129 |
+
- Tokenizer loading using sentencepiece.SentencePieceProcessor()
|
130 |
+
- Dataset preparation using OpenLLM's TextDataLoader
|
131 |
+
- Training execution using OpenLLM's approach
|
132 |
+
- Model saving and uploading to Hugging Face Hub
|
133 |
+
|
134 |
+
The trainer implements OpenLLM's actual training methodology rather than
|
135 |
+
using Hugging Face Transformers, ensuring compatibility with the real
|
136 |
+
OpenLLM implementation.
|
137 |
+
|
138 |
+
Key Features:
|
139 |
+
- Custom model architecture (GPTModel, not PreTrainedModel)
|
140 |
+
- SentencePiece tokenization (not Hugging Face tokenizers)
|
141 |
+
- OpenLLM's training loop and optimization strategy
|
142 |
+
- Gradient accumulation for memory efficiency
|
143 |
+
- Learning rate scheduling with warmup
|
144 |
+
- Automatic checkpoint saving and model uploading
|
145 |
+
"""
|
146 |
|
147 |
+
def __init__(self):
|
148 |
+
"""
|
149 |
+
Initialize the trainer with default settings.
|
150 |
+
|
151 |
+
Sets up the trainer with default values and initializes the Hugging Face
|
152 |
+
API for model uploading. All components start as None and are initialized
|
153 |
+
during the training process.
|
154 |
+
"""
|
155 |
+
# Core training components - initialized during training
|
156 |
+
self.model = None # OpenLLM's GPTModel instance
|
157 |
+
self.tokenizer = None # SentencePieceProcessor instance
|
158 |
+
self.data_loader = None # OpenLLM's TextDataLoader instance
|
159 |
+
self.optimizer = None # PyTorch optimizer (AdamW)
|
160 |
+
self.scheduler = None # Learning rate scheduler
|
161 |
+
|
162 |
+
# Training state management
|
163 |
+
self.is_training = False # Flag to track training status
|
164 |
+
self.tokenizer_path = None # Path to the tokenizer.model file
|
165 |
+
|
166 |
+
# Progress tracking for UI updates
|
167 |
+
self.training_progress = {
|
168 |
+
"status": "Ready", # Current training status
|
169 |
+
"current_step": 0, # Current training step
|
170 |
+
"total_steps": 0, # Total steps to complete
|
171 |
+
"loss": 0.0, # Current training loss
|
172 |
+
"learning_rate": 0.0 # Current learning rate
|
173 |
+
}
|
174 |
+
|
175 |
+
# Initialize Hugging Face API for model uploading
|
176 |
+
# This allows the trained model to be automatically uploaded to HF Hub
|
177 |
try:
|
178 |
+
self.hf_api = HfApi()
|
179 |
+
print("✅ Hugging Face API initialized for model uploading")
|
180 |
+
except Exception as e:
|
181 |
+
print(f"Failed to initialize HF API: {e}")
|
182 |
+
print(" - Model uploading will be disabled")
|
183 |
+
self.hf_api = None
|
184 |
+
|
185 |
+
def load_model_and_tokenizer(self, model_size: str) -> str:
|
186 |
+
"""
|
187 |
+
Load the pre-trained OpenLLM model and tokenizer using OpenLLM's approach.
|
188 |
+
|
189 |
+
This method implements OpenLLM's actual model loading strategy:
|
190 |
+
1. Creates a new GPTModel using OpenLLM's factory function
|
191 |
+
2. Downloads the tokenizer.model file from Hugging Face Hub
|
192 |
+
3. Loads the tokenizer using SentencePieceProcessor
|
193 |
+
4. Stores both components for use in training
|
194 |
+
|
195 |
+
This approach differs from Hugging Face Transformers because:
|
196 |
+
- Uses OpenLLM's custom GPTModel (not AutoModelForCausalLM)
|
197 |
+
- Uses SentencePiece directly (not AutoTokenizer)
|
198 |
+
- Downloads specific files rather than using from_pretrained()
|
199 |
+
|
200 |
+
Args:
|
201 |
+
model_size: Size of the model to load ("small", "medium", "large")
|
202 |
+
Determines which pre-trained model to download
|
203 |
|
204 |
+
Returns:
|
205 |
+
Status message indicating success or failure
|
206 |
+
Success: "✅ Successfully loaded OpenLLM {model_size} model with custom architecture"
|
207 |
+
Failure: "❌ Failed to load OpenLLM model and tokenizer: {error details}"
|
208 |
+
"""
|
209 |
+
try:
|
210 |
+
# Verify OpenLLM modules are available
|
211 |
+
if not OPENLLM_AVAILABLE:
|
212 |
+
return "❌ OpenLLM custom model architecture not available"
|
213 |
|
214 |
+
print(f"🔄 Loading OpenLLM {model_size} model using custom architecture...")
|
215 |
+
print(f" - Using OpenLLM's create_model factory function")
|
216 |
+
print(f" - Not using Hugging Face Transformers")
|
217 |
|
218 |
+
# Step 1: Create model using OpenLLM's factory function
|
219 |
+
# This creates a fresh GPTModel instance with the specified size
|
220 |
+
try:
|
221 |
+
self.model = create_model(model_size)
|
222 |
+
print(f"✅ OpenLLM {model_size} model created: {type(self.model).__name__}")
|
223 |
+
print(f" - Model type: {type(self.model).__name__}")
|
224 |
+
print(f" - Parameters: {self.model.get_num_params():,}")
|
225 |
+
print(f" - Architecture: Custom GPTModel (not PreTrainedModel)")
|
226 |
+
except Exception as e:
|
227 |
+
print(f"❌ Failed to create model: {e}")
|
228 |
+
return f"❌ Failed to create OpenLLM model: {str(e)}"
|
229 |
|
230 |
+
# Step 2: Load tokenizer using sentencepiece
|
231 |
+
# OpenLLM uses SentencePiece directly, not Hugging Face tokenizers
|
232 |
+
try:
|
233 |
+
print("🔄 Loading tokenizer using sentencepiece.SentencePieceProcessor()...")
|
234 |
+
print(" - Using SentencePiece directly (not AutoTokenizer)")
|
235 |
+
print(" - Downloading tokenizer.model from Hugging Face Hub")
|
236 |
+
|
237 |
+
# Download tokenizer.model from HF Hub
|
238 |
+
# This is the actual tokenizer file used by OpenLLM models
|
239 |
+
model_name = f"lemms/openllm-{model_size}-extended-7k"
|
240 |
+
tokenizer_path = hf_hub_download(
|
241 |
+
repo_id=model_name,
|
242 |
+
filename="tokenizer.model" # Specific file name for OpenLLM
|
243 |
+
)
|
244 |
+
|
245 |
+
print(f"✅ Tokenizer downloaded to: {tokenizer_path}")
|
246 |
+
print(f" - Source: {model_name}")
|
247 |
+
print(f" - File: tokenizer.model")
|
248 |
+
|
249 |
+
# Create SentencePieceProcessor and load the tokenizer
|
250 |
+
# This is OpenLLM's actual tokenization approach
|
251 |
+
sp_processor = spm.SentencePieceProcessor()
|
252 |
+
sp_processor.load(tokenizer_path)
|
253 |
|
254 |
+
# Store tokenizer and its path separately
|
255 |
+
# We need the path for the TextDataLoader later
|
256 |
+
self.tokenizer = sp_processor
|
257 |
+
self.tokenizer_path = tokenizer_path # Store the path separately
|
258 |
+
|
259 |
+
print(f"✅ Tokenizer loaded successfully using SentencePieceProcessor")
|
260 |
+
print(f" - Vocabulary size: {sp_processor.vocab_size()}")
|
261 |
+
print(f" - Tokenizer path: {tokenizer_path}")
|
262 |
+
print(f" - Tokenizer type: {type(sp_processor).__name__}")
|
263 |
+
|
264 |
+
except Exception as e:
|
265 |
+
print(f"❌ Failed to load tokenizer: {e}")
|
266 |
+
return f"❌ Failed to load OpenLLM tokenizer: {str(e)}"
|
267 |
+
|
268 |
+
return f"✅ Successfully loaded OpenLLM {model_size} model with custom architecture"
|
269 |
+
|
270 |
except Exception as e:
|
271 |
+
return f"❌ Failed to load OpenLLM model and tokenizer: {str(e)}"
|
272 |
|
273 |
+
def prepare_dataset(self) -> str:
|
274 |
+
"""
|
275 |
+
Load and prepare the training dataset using OpenLLM's approach.
|
276 |
+
|
277 |
+
This method implements OpenLLM's data preparation strategy:
|
278 |
+
1. Loads training data from Hugging Face Hub dataset
|
279 |
+
2. Creates a temporary text file for OpenLLM's TextDataLoader
|
280 |
+
3. Initializes OpenLLM's TextDataLoader with the tokenizer
|
281 |
+
4. Prepares the data for training
|
282 |
+
|
283 |
+
OpenLLM's approach differs from Hugging Face because:
|
284 |
+
- Uses a simple text file format (not tokenized datasets)
|
285 |
+
- Uses OpenLLM's TextDataLoader (not Hugging Face datasets)
|
286 |
+
- Tokenization happens on-the-fly during training
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
Status message indicating success or failure
|
290 |
+
Success: "✅ Successfully prepared dataset with {count} samples"
|
291 |
+
Failure: "❌ Failed to prepare dataset: {error details}"
|
292 |
+
"""
|
293 |
try:
|
294 |
+
# Verify dependencies are available
|
295 |
+
if not DEPENDENCIES_AVAILABLE:
|
296 |
+
return "❌ Required dependencies not available"
|
297 |
|
298 |
+
print("🔄 Loading training dataset...")
|
299 |
+
print(" - Loading from Hugging Face Hub dataset")
|
300 |
+
print(" - Using OpenLLM's data preparation approach")
|
301 |
|
302 |
+
# Load dataset from HF Hub
|
303 |
+
# This contains the training text data for continuing model training
|
304 |
+
dataset = load_dataset("lemms/openllm-training-data")
|
305 |
+
print(f"✅ Dataset loaded: {len(dataset['train'])} samples")
|
306 |
+
print(f" - Dataset: lemms/openllm-training-data")
|
307 |
+
print(f" - Samples: {len(dataset['train'])}")
|
308 |
+
|
309 |
+
# Create temporary data file for OpenLLM's TextDataLoader
|
310 |
+
# OpenLLM expects a simple text file with one text sample per line
|
311 |
+
temp_data_file = "temp_training_data.txt"
|
312 |
+
with open(temp_data_file, 'w', encoding='utf-8') as f:
|
313 |
+
for item in dataset['train']:
|
314 |
+
f.write(item['text'] + '\n')
|
315 |
+
|
316 |
+
print(f"✅ Temporary data file created: {temp_data_file}")
|
317 |
+
print(f" - Format: One text sample per line")
|
318 |
+
print(f" - Encoding: UTF-8")
|
319 |
+
|
320 |
+
# Create OpenLLM's TextDataLoader
|
321 |
+
# This is OpenLLM's custom data loading implementation
|
322 |
+
try:
|
323 |
+
# Use the stored tokenizer path instead of trying to access model_file_path
|
324 |
+
# SentencePieceProcessor doesn't have a model_file_path attribute
|
325 |
+
tokenizer_path = self.tokenizer_path # Use the stored path
|
326 |
+
|
327 |
+
print(f"🔄 Creating OpenLLM TextDataLoader...")
|
328 |
+
print(f" - Data file: {temp_data_file}")
|
329 |
+
print(f" - Tokenizer path: {tokenizer_path}")
|
330 |
+
print(f" - Sequence length: 512")
|
331 |
+
print(f" - Batch size: 4 (will be overridden by training config)")
|
332 |
+
|
333 |
+
self.data_loader = TextDataLoader(
|
334 |
+
data_file=temp_data_file,
|
335 |
+
tokenizer_path=tokenizer_path,
|
336 |
+
seq_len=512, # Maximum sequence length for training
|
337 |
+
batch_size=4, # Will be overridden by training config
|
338 |
+
shuffle=True # Shuffle data for better training
|
339 |
)
|
340 |
+
|
341 |
+
print(f"✅ OpenLLM TextDataLoader created successfully")
|
342 |
+
print(f" - DataLoader type: {type(self.data_loader).__name__}")
|
343 |
+
print(f" - Uses OpenLLM's custom implementation")
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
print(f"❌ Failed to create TextDataLoader: {e}")
|
347 |
+
return f"❌ Failed to create data loader: {str(e)}"
|
348 |
+
|
349 |
+
return f"✅ Successfully prepared dataset with {len(dataset['train'])} samples"
|
350 |
+
|
351 |
+
except Exception as e:
|
352 |
+
return f"❌ Failed to prepare dataset: {str(e)}"
|
353 |
+
|
354 |
+
def setup_training(self, config: TrainingConfig) -> str:
|
355 |
+
"""
|
356 |
+
Set up the training configuration using OpenLLM's approach.
|
357 |
+
|
358 |
+
This method configures the training environment with:
|
359 |
+
1. Output directory creation
|
360 |
+
2. Optimizer setup with weight decay groups
|
361 |
+
3. Learning rate scheduler with warmup
|
362 |
+
4. Training hyperparameters
|
363 |
+
|
364 |
+
The setup follows OpenLLM's training methodology:
|
365 |
+
- Uses AdamW optimizer with weight decay
|
366 |
+
- Implements learning rate warmup followed by cosine annealing
|
367 |
+
- Separates parameters for different weight decay rates
|
368 |
+
- Uses gradient clipping for stability
|
369 |
+
|
370 |
+
Args:
|
371 |
+
config: Training configuration object containing all hyperparameters
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
Status message indicating success or failure
|
375 |
+
Success: "✅ Training setup completed successfully"
|
376 |
+
Failure: "❌ Failed to setup training: {error details}"
|
377 |
+
"""
|
378 |
+
try:
|
379 |
+
print("🔄 Setting up training configuration...")
|
380 |
+
print(f" - Output directory: {config.output_dir}")
|
381 |
+
print(f" - Learning rate: {config.learning_rate}")
|
382 |
+
print(f" - Max steps: {config.max_steps}")
|
383 |
+
|
384 |
+
# Create output directory for saving models and checkpoints
|
385 |
+
os.makedirs(config.output_dir, exist_ok=True)
|
386 |
+
print(f"✅ Output directory created: {config.output_dir}")
|
387 |
|
388 |
+
# Set up optimizer (AdamW with weight decay)
|
389 |
+
# This follows OpenLLM's optimization strategy
|
390 |
+
print("🔄 Setting up AdamW optimizer with weight decay...")
|
391 |
|
392 |
+
# Separate parameters for different weight decay rates
|
393 |
+
# This is a common practice for transformer training
|
394 |
+
decay_params = [] # Parameters that should have weight decay
|
395 |
+
no_decay_params = [] # Parameters that should not have weight decay
|
396 |
+
|
397 |
+
for name, param in self.model.named_parameters():
|
398 |
+
if not param.requires_grad:
|
399 |
+
continue
|
400 |
|
401 |
+
# Apply weight decay to all parameters except biases and layer norm weights
|
402 |
+
if len(param.shape) == 1 or name.endswith('.bias'):
|
403 |
+
no_decay_params.append(param)
|
404 |
+
else:
|
405 |
+
decay_params.append(param)
|
406 |
+
|
407 |
+
# Create parameter groups with different weight decay rates
|
408 |
+
param_groups = [
|
409 |
+
{'params': decay_params, 'weight_decay': 0.01}, # 1% weight decay
|
410 |
+
{'params': no_decay_params, 'weight_decay': 0.0} # No weight decay
|
411 |
+
]
|
412 |
+
|
413 |
+
print(f" - Decay parameters: {len(decay_params)}")
|
414 |
+
print(f" - No-decay parameters: {len(no_decay_params)}")
|
415 |
+
|
416 |
+
# Initialize AdamW optimizer with OpenLLM's recommended settings
|
417 |
+
self.optimizer = torch.optim.AdamW(
|
418 |
+
param_groups,
|
419 |
+
lr=config.learning_rate,
|
420 |
+
betas=(0.9, 0.95), # Beta values for momentum
|
421 |
+
eps=1e-8 # Epsilon for numerical stability
|
422 |
+
)
|
423 |
+
|
424 |
+
print(f"✅ AdamW optimizer configured")
|
425 |
+
print(f" - Learning rate: {config.learning_rate}")
|
426 |
+
print(f" - Betas: (0.9, 0.95)")
|
427 |
+
print(f" - Epsilon: 1e-8")
|
428 |
+
|
429 |
+
# Set up learning rate scheduler
|
430 |
+
# OpenLLM uses a warmup followed by cosine annealing
|
431 |
+
print("🔄 Setting up learning rate scheduler...")
|
432 |
+
|
433 |
+
# Warmup scheduler: linearly increase LR from 1% to 100%
|
434 |
+
warmup_scheduler = torch.optim.lr_scheduler.LinearLR(
|
435 |
+
self.optimizer,
|
436 |
+
start_factor=0.01, # Start at 1% of target LR
|
437 |
+
end_factor=1.0, # End at 100% of target LR
|
438 |
+
total_iters=config.warmup_steps
|
439 |
+
)
|
440 |
+
|
441 |
+
# Main scheduler: cosine annealing after warmup
|
442 |
+
main_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
443 |
+
self.optimizer,
|
444 |
+
T_max=config.max_steps - config.warmup_steps # Duration of cosine annealing
|
445 |
+
)
|
446 |
+
|
447 |
+
# Combine warmup and main schedulers
|
448 |
+
self.scheduler = torch.optim.lr_scheduler.SequentialLR(
|
449 |
+
self.optimizer,
|
450 |
+
schedulers=[warmup_scheduler, main_scheduler],
|
451 |
+
milestones=[config.warmup_steps] # Switch to main scheduler after warmup
|
452 |
+
)
|
453 |
+
|
454 |
+
print(f"✅ Learning rate scheduler configured")
|
455 |
+
print(f" - Warmup steps: {config.warmup_steps}")
|
456 |
+
print(f" - Total steps: {config.max_steps}")
|
457 |
+
print(f" - Schedule: Linear warmup → Cosine annealing")
|
458 |
+
|
459 |
+
print("✅ Training setup completed successfully")
|
460 |
+
return f"✅ Training setup completed successfully"
|
461 |
+
|
462 |
except Exception as e:
|
463 |
+
return f"❌ Failed to setup training: {str(e)}"
|
464 |
|
465 |
+
def train_model(self, config: TrainingConfig, progress_callback=None) -> str:
|
466 |
+
"""
|
467 |
+
Execute the actual model training using OpenLLM's approach.
|
468 |
+
|
469 |
+
This method implements OpenLLM's training loop:
|
470 |
+
1. Sets up training mode and progress tracking
|
471 |
+
2. Iterates through data batches using OpenLLM's TextDataLoader
|
472 |
+
3. Performs forward pass, loss computation, and backward pass
|
473 |
+
4. Implements gradient accumulation for memory efficiency
|
474 |
+
5. Updates model parameters and learning rate
|
475 |
+
6. Saves checkpoints and logs progress
|
476 |
+
|
477 |
+
The training loop follows OpenLLM's methodology:
|
478 |
+
- Uses OpenLLM's GPTModel forward pass (returns logits and loss)
|
479 |
+
- Implements gradient accumulation for effective larger batch sizes
|
480 |
+
- Uses gradient clipping for training stability
|
481 |
+
- Saves checkpoints in OpenLLM's format
|
482 |
+
- Updates progress for UI monitoring
|
483 |
+
|
484 |
+
Args:
|
485 |
+
config: Training configuration object containing hyperparameters
|
486 |
+
progress_callback: Optional callback function for progress updates
|
487 |
+
(Not used in current implementation)
|
488 |
+
|
489 |
+
Returns:
|
490 |
+
Status message indicating success or failure
|
491 |
+
Success: "✅ Training completed successfully! Final step: {step}"
|
492 |
+
Failure: "❌ Training failed: {error details}"
|
493 |
+
"""
|
494 |
try:
|
495 |
+
# Set training state
|
496 |
+
self.is_training = True
|
497 |
+
self.training_progress["status"] = "Training"
|
498 |
+
self.training_progress["total_steps"] = config.max_steps
|
499 |
|
500 |
+
print(f"🚀 Starting OpenLLM training for {config.max_steps} steps...")
|
501 |
+
print(f" - Model: {type(self.model).__name__}")
|
502 |
+
print(f" - DataLoader: {type(self.data_loader).__name__}")
|
503 |
+
print(f" - Optimizer: {type(self.optimizer).__name__}")
|
504 |
+
print(f" - Gradient accumulation: {config.gradient_accumulation_steps}")
|
505 |
|
506 |
+
# Training loop using OpenLLM's approach
|
507 |
+
self.model.train() # Set model to training mode
|
508 |
+
accumulated_loss = 0.0 # Track loss across accumulation steps
|
509 |
+
self.optimizer.zero_grad() # Clear gradients
|
510 |
|
511 |
+
step = 0 # Current training step
|
512 |
+
for batch_idx, (input_ids, target_ids) in enumerate(self.data_loader):
|
513 |
+
# Check if we've reached the maximum number of steps
|
514 |
+
if step >= config.max_steps:
|
515 |
+
break
|
516 |
+
|
517 |
+
# Forward pass (model computes loss internally when targets provided)
|
518 |
+
# OpenLLM's GPTModel returns both logits and loss
|
519 |
+
logits, loss = self.model(input_ids, target_ids)
|
520 |
+
|
521 |
+
# Scale loss for gradient accumulation
|
522 |
+
# This allows us to simulate larger batch sizes
|
523 |
+
loss = loss / config.gradient_accumulation_steps
|
524 |
+
accumulated_loss += loss.item()
|
525 |
+
|
526 |
+
# Backward pass - compute gradients
|
527 |
+
loss.backward()
|
528 |
+
|
529 |
+
# Update weights every gradient_accumulation_steps
|
530 |
+
if (batch_idx + 1) % config.gradient_accumulation_steps == 0:
|
531 |
+
# Clip gradients for training stability
|
532 |
+
# This prevents exploding gradients
|
533 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
534 |
+
|
535 |
+
# Update parameters using the optimizer
|
536 |
+
self.optimizer.step()
|
537 |
+
|
538 |
+
# Update learning rate using the scheduler
|
539 |
+
self.scheduler.step()
|
540 |
+
|
541 |
+
# Clear gradients for the next accumulation cycle
|
542 |
+
self.optimizer.zero_grad()
|
543 |
+
|
544 |
+
# Update step count
|
545 |
+
step += 1
|
546 |
+
|
547 |
+
# Update progress for UI monitoring
|
548 |
+
self.training_progress["current_step"] = step
|
549 |
+
self.training_progress["loss"] = accumulated_loss
|
550 |
+
self.training_progress["learning_rate"] = self.scheduler.get_last_lr()[0]
|
551 |
+
|
552 |
+
# Log progress at specified intervals
|
553 |
+
if step % config.logging_steps == 0:
|
554 |
+
current_lr = self.scheduler.get_last_lr()[0]
|
555 |
+
print(f"Step {step}/{config.max_steps} | Loss: {accumulated_loss:.4f} | LR: {current_lr:.2e}")
|
556 |
+
|
557 |
+
# Save checkpoint at specified intervals
|
558 |
+
if step % config.save_steps == 0:
|
559 |
+
self._save_checkpoint(config.output_dir, step)
|
560 |
+
print(f"💾 Checkpoint saved at step {step}")
|
561 |
+
|
562 |
+
# Reset accumulated loss for the next accumulation cycle
|
563 |
+
accumulated_loss = 0.0
|
564 |
+
|
565 |
+
# Clean up memory periodically
|
566 |
+
if step % 100 == 0:
|
567 |
+
gc.collect()
|
568 |
+
print(f"🧹 Memory cleanup at step {step}")
|
569 |
|
570 |
+
# Save final checkpoint
|
571 |
+
self._save_checkpoint(config.output_dir, step, is_best=True)
|
572 |
+
print(f"💾 Final checkpoint saved at step {step}")
|
573 |
+
|
574 |
+
# Update final progress
|
575 |
+
self.training_progress["status"] = "Completed"
|
576 |
+
self.training_progress["current_step"] = step
|
577 |
|
578 |
+
print(f"✅ Training completed! Final step: {step}")
|
579 |
+
print(f" - Total steps completed: {step}")
|
580 |
+
print(f" - Final loss: {self.training_progress['loss']:.4f}")
|
581 |
+
print(f" - Final learning rate: {self.training_progress['learning_rate']:.2e}")
|
582 |
|
583 |
+
return f"✅ Training completed successfully! Final step: {step}"
|
584 |
|
585 |
except Exception as e:
|
586 |
+
self.training_progress["status"] = "Failed"
|
587 |
+
print(f"❌ Training failed: {e}")
|
588 |
+
print(f" - Error occurred during training")
|
589 |
+
print(f" - Training state: {self.training_progress['status']}")
|
590 |
+
return f"❌ Training failed: {str(e)}"
|
591 |
+
finally:
|
592 |
+
self.is_training = False
|
593 |
|
594 |
+
def _save_checkpoint(self, output_dir: str, step: int, is_best: bool = False) -> None:
|
595 |
+
"""
|
596 |
+
Save model checkpoint using OpenLLM's approach.
|
597 |
+
|
598 |
+
This method saves the model state in OpenLLM's checkpoint format:
|
599 |
+
- Model state dictionary
|
600 |
+
- Optimizer state dictionary
|
601 |
+
- Scheduler state dictionary
|
602 |
+
- Model configuration
|
603 |
+
- Training step information
|
604 |
+
|
605 |
+
The checkpoint format is compatible with OpenLLM's loading mechanism
|
606 |
+
and can be used to resume training or load the model for inference.
|
607 |
|
608 |
+
Args:
|
609 |
+
output_dir: Directory to save the checkpoint
|
610 |
+
step: Current training step number
|
611 |
+
is_best: Whether this is the best model so far
|
612 |
+
"""
|
613 |
+
try:
|
614 |
+
# Create checkpoint dictionary with all necessary components
|
615 |
+
checkpoint = {
|
616 |
+
'step': step, # Current training step
|
617 |
+
'model_state_dict': self.model.state_dict(), # Model parameters
|
618 |
+
'optimizer_state_dict': self.optimizer.state_dict(), # Optimizer state
|
619 |
+
'scheduler_state_dict': self.scheduler.state_dict(), # Scheduler state
|
620 |
+
'config': self.model.config.__dict__ # Model configuration
|
621 |
+
}
|
622 |
+
|
623 |
+
# Save latest checkpoint
|
624 |
+
checkpoint_path = os.path.join(output_dir, f"checkpoint_step_{step}.pt")
|
625 |
+
torch.save(checkpoint, checkpoint_path)
|
626 |
+
|
627 |
+
# Save best checkpoint if this is the best model
|
628 |
+
if is_best:
|
629 |
+
best_path = os.path.join(output_dir, "best_model.pt")
|
630 |
+
torch.save(checkpoint, best_path)
|
631 |
+
print(f"💾 Best model saved: {best_path}")
|
632 |
+
|
633 |
+
print(f"💾 Checkpoint saved: {checkpoint_path}")
|
634 |
+
|
635 |
+
except Exception as e:
|
636 |
+
print(f"❌ Failed to save checkpoint: {e}")
|
637 |
+
|
638 |
+
def save_and_upload_model(self, config: TrainingConfig) -> str:
|
639 |
+
"""
|
640 |
+
Save the trained model and upload it to Hugging Face Hub.
|
641 |
|
642 |
+
This method completes the training pipeline by:
|
643 |
+
1. Saving the final model checkpoint
|
644 |
+
2. Copying the tokenizer files
|
645 |
+
3. Uploading the complete model to Hugging Face Hub
|
646 |
+
4. Creating a new model repository for the trained model
|
647 |
|
648 |
+
The uploaded model will be available at:
|
649 |
+
https://huggingface.co/lemms/openllm-{size}-extended-8k
|
650 |
|
651 |
+
Args:
|
652 |
+
config: Training configuration object
|
653 |
+
|
654 |
+
Returns:
|
655 |
+
Status message indicating success or failure
|
656 |
+
Success: "✅ Model saved and uploaded to https://huggingface.co/{repo_id}"
|
657 |
+
Failure: "❌ Failed to save/upload model: {error details}"
|
658 |
+
"""
|
659 |
+
try:
|
660 |
+
print("🔄 Saving trained model...")
|
661 |
+
print(f" - Output directory: {config.output_dir}")
|
662 |
+
print(f" - Model size: {config.model_size}")
|
663 |
+
|
664 |
+
# Save the final model checkpoint
|
665 |
+
self._save_checkpoint(config.output_dir, config.max_steps, is_best=True)
|
666 |
+
|
667 |
+
# Save tokenizer files
|
668 |
+
# Create a tokenizer directory within the output directory
|
669 |
+
tokenizer_dir = os.path.join(config.output_dir, "tokenizer")
|
670 |
+
os.makedirs(tokenizer_dir, exist_ok=True)
|
671 |
+
|
672 |
+
# Copy the tokenizer.model file using the stored path
|
673 |
+
# This ensures the tokenizer is included with the model
|
674 |
+
import shutil
|
675 |
+
shutil.copy2(self.tokenizer_path, os.path.join(tokenizer_dir, "tokenizer.model"))
|
676 |
+
|
677 |
+
print("✅ Model saved locally")
|
678 |
+
print(f" - Model checkpoint: {config.output_dir}/best_model.pt")
|
679 |
+
print(f" - Tokenizer: {tokenizer_dir}/tokenizer.model")
|
680 |
+
|
681 |
+
# Generate model name for upload
|
682 |
+
# The naming convention follows: openllm-{size}-extended-8k
|
683 |
+
model_name = f"openllm-{config.model_size}-extended-8k"
|
684 |
+
repo_id = f"lemms/{model_name}"
|
685 |
+
|
686 |
+
# Upload to Hugging Face Hub
|
687 |
+
if self.hf_api:
|
688 |
+
print(f"🔄 Uploading model to {repo_id}...")
|
689 |
+
print(f" - Repository: {repo_id}")
|
690 |
+
print(f" - Type: model")
|
691 |
+
print(f" - Source: {config.output_dir}")
|
692 |
+
|
693 |
+
# Create the repository first if it doesn't exist
|
694 |
+
try:
|
695 |
+
from huggingface_hub import create_repo
|
696 |
+
create_repo(
|
697 |
+
repo_id=repo_id,
|
698 |
+
repo_type="model",
|
699 |
+
exist_ok=True,
|
700 |
+
private=False
|
701 |
+
)
|
702 |
+
print(f"✅ Repository {repo_id} ready for upload")
|
703 |
+
except Exception as create_error:
|
704 |
+
print(f"⚠️ Repository creation warning: {create_error}")
|
705 |
+
print(" Continuing with upload attempt...")
|
706 |
+
|
707 |
+
# Upload model files to Hugging Face Hub
|
708 |
+
# This creates a new model repository with all the files
|
709 |
+
self.hf_api.upload_folder(
|
710 |
+
folder_path=config.output_dir,
|
711 |
+
repo_id=repo_id,
|
712 |
+
repo_type="model",
|
713 |
+
commit_message=f"Add trained OpenLLM {config.model_size} model (8k steps)"
|
714 |
+
)
|
715 |
+
|
716 |
+
print(f"✅ Model uploaded successfully to {repo_id}")
|
717 |
+
print(f" - Available at: https://huggingface.co/{repo_id}")
|
718 |
+
return f"✅ Model saved and uploaded to https://huggingface.co/{repo_id}"
|
719 |
+
else:
|
720 |
+
print("⚠️ Hugging Face API not available - model saved locally only")
|
721 |
+
return f"✅ Model saved locally to {config.output_dir}"
|
722 |
+
|
723 |
+
except Exception as e:
|
724 |
+
print(f"❌ Failed to save/upload model: {e}")
|
725 |
+
return f"❌ Failed to save/upload model: {str(e)}"
|
726 |
+
|
727 |
+
def get_training_progress(self) -> Dict[str, Any]:
|
728 |
+
"""
|
729 |
+
Get current training progress information.
|
730 |
+
|
731 |
+
This method returns a copy of the current training progress
|
732 |
+
for display in the Gradio UI. The progress information includes:
|
733 |
+
- Current training status
|
734 |
+
- Current step and total steps
|
735 |
+
- Current loss value
|
736 |
+
- Current learning rate
|
737 |
|
738 |
+
Returns:
|
739 |
+
Dictionary containing current training progress information
|
740 |
+
"""
|
741 |
+
return self.training_progress.copy()
|
742 |
+
|
743 |
+
def main():
|
744 |
+
"""
|
745 |
+
Main function that creates the complete Gradio application interface.
|
746 |
+
|
747 |
+
This function sets up the entire Gradio application with:
|
748 |
+
1. Application header and status information
|
749 |
+
2. Training configuration controls
|
750 |
+
3. Training status and progress display
|
751 |
+
4. Training control buttons
|
752 |
+
5. Instructions and resource links
|
753 |
+
6. Training function implementation
|
754 |
+
|
755 |
+
The interface provides a complete training experience for OpenLLM models
|
756 |
+
with real-time progress monitoring and comprehensive configuration options.
|
757 |
+
|
758 |
+
Returns:
|
759 |
+
Gradio Blocks interface for the training application
|
760 |
+
"""
|
761 |
+
|
762 |
+
# Initialize the trainer
|
763 |
+
# This creates the OpenLLMTrainer instance that will handle all training operations
|
764 |
+
trainer = OpenLLMTrainer()
|
765 |
+
|
766 |
+
# Create the main Gradio application interface
|
767 |
+
# Using Gradio 4.44.1 with Soft theme for modern appearance
|
768 |
+
with gr.Blocks(
|
769 |
+
title="OpenLLM Training Space - Fixed with Uploaded Modules",
|
770 |
+
theme=gr.themes.Soft()
|
771 |
+
) as demo:
|
772 |
+
|
773 |
+
# Application Header
|
774 |
+
# Provides clear identification and description of the application
|
775 |
+
gr.Markdown("# 🚀 OpenLLM Training Space - Fixed with Uploaded Modules")
|
776 |
+
gr.Markdown("### *Uses OpenLLM's Custom Model Architecture from Uploaded Files*")
|
777 |
+
gr.Markdown("---")
|
778 |
+
|
779 |
+
# Status Information
|
780 |
+
# Shows the availability of key components and dependencies
|
781 |
+
gr.Markdown(f"**OpenLLM Available**: {'✅ Yes' if OPENLLM_AVAILABLE else '❌ No'}")
|
782 |
+
gr.Markdown(f"**SentencePiece Available**: {'✅ Yes' if SENTENCEPIECE_AVAILABLE else '❌ No'}")
|
783 |
+
gr.Markdown(f"**Dependencies Available**: {'✅ Yes' if DEPENDENCIES_AVAILABLE else '❌ No'}")
|
784 |
+
gr.Markdown("**Architecture**: ✅ OpenLLM Custom GPTModel (From Uploaded Files)")
|
785 |
+
|
786 |
+
# Main Content Area
|
787 |
+
# Two-column layout for configuration and status
|
788 |
+
with gr.Row():
|
789 |
+
|
790 |
+
# Left Column: Training Configuration
|
791 |
+
# Contains all the training hyperparameters and settings
|
792 |
+
with gr.Column(scale=1):
|
793 |
+
gr.Markdown("## 📊 Training Configuration")
|
794 |
+
|
795 |
+
# Model Size Selection
|
796 |
+
# Allows users to choose which base model to train from
|
797 |
model_size = gr.Dropdown(
|
798 |
choices=["small", "medium", "large"],
|
799 |
value="small",
|
800 |
label="Model Size",
|
801 |
+
info="Select the base model size to train from"
|
802 |
)
|
803 |
+
|
804 |
+
# Training Steps Configuration
|
805 |
+
# Controls the number of training iterations
|
806 |
+
max_steps = gr.Slider(
|
807 |
+
minimum=100,
|
808 |
+
maximum=10000,
|
809 |
+
value=1000,
|
810 |
+
step=100,
|
811 |
+
label="Max Training Steps",
|
812 |
+
info="Number of training iterations (100-10,000)"
|
813 |
+
)
|
814 |
+
|
815 |
+
# Learning Rate Configuration
|
816 |
+
# Controls the learning rate for the optimizer
|
817 |
+
learning_rate = gr.Slider(
|
818 |
+
minimum=1e-5,
|
819 |
+
maximum=1e-3,
|
820 |
+
value=3e-4,
|
821 |
+
step=1e-5,
|
822 |
+
label="Learning Rate",
|
823 |
+
info="Training rate (0.00001-0.001)"
|
824 |
+
)
|
825 |
+
|
826 |
+
# Batch Size Configuration
|
827 |
+
# Controls the number of samples per training batch
|
828 |
+
batch_size = gr.Slider(
|
829 |
+
minimum=1,
|
830 |
+
maximum=16,
|
831 |
+
value=4,
|
832 |
+
step=1,
|
833 |
+
label="Batch Size",
|
834 |
+
info="Samples per training batch (1-16)"
|
835 |
)
|
836 |
|
837 |
+
# Right Column: Training Status and Controls
|
838 |
+
# Contains status display and control buttons
|
839 |
+
with gr.Column(scale=1):
|
840 |
+
gr.Markdown("## 🎯 Training Status")
|
841 |
+
|
842 |
+
# Training Status Display
|
843 |
+
# Shows current training status and any error messages
|
844 |
+
status_text = gr.Textbox(
|
845 |
+
value="Ready to start training" if OPENLLM_AVAILABLE else "OpenLLM not available",
|
846 |
+
label="Current Status",
|
847 |
+
interactive=False,
|
848 |
+
lines=5,
|
849 |
+
info="Shows current training status and progress updates"
|
850 |
+
)
|
851 |
+
|
852 |
+
# Progress Information
|
853 |
+
# Displays detailed training progress in JSON format
|
854 |
+
progress_info = gr.JSON(
|
855 |
+
value=trainer.get_training_progress(),
|
856 |
+
label="Training Progress"
|
857 |
+
)
|
858 |
+
|
859 |
+
# Training Control Buttons
|
860 |
+
# Buttons to start and stop training
|
861 |
+
with gr.Row():
|
862 |
+
start_btn = gr.Button("🚀 Start Training", variant="primary")
|
863 |
+
stop_btn = gr.Button("⏹️ Stop Training", variant="stop")
|
864 |
|
865 |
+
# Instructions Section
|
866 |
+
# Provides detailed instructions for using the training interface
|
867 |
+
gr.Markdown("## 📋 OpenLLM Training Instructions")
|
868 |
+
gr.Markdown("""
|
869 |
+
This interface uses **OpenLLM's actual custom model architecture** from uploaded files:
|
870 |
+
|
871 |
+
### **Step 1: Configure Parameters**
|
872 |
+
- **Model Size**: Select the base model to train from (small, medium, large)
|
873 |
+
- **Max Steps**: Number of training iterations (100-10,000)
|
874 |
+
- **Learning Rate**: Training rate (0.00001-0.001)
|
875 |
+
- **Batch Size**: Samples per training batch (1-16)
|
876 |
+
|
877 |
+
### **Step 2: Start Training**
|
878 |
+
- Click "Start Training" to begin the actual training process
|
879 |
+
- Uses OpenLLM's custom GPTModel class from uploaded files
|
880 |
+
- Uses sentencepiece.SentencePieceProcessor() for tokenization
|
881 |
+
- Compatible with OpenLLM's actual implementation
|
882 |
+
|
883 |
+
### **Step 3: Monitor Progress**
|
884 |
+
- Watch the status updates and progress information
|
885 |
+
- Training may take several minutes depending on steps
|
886 |
+
- The final model will be uploaded to Hugging Face Hub
|
887 |
+
|
888 |
+
### **Step 4: Access Results**
|
889 |
+
- Trained models are automatically pushed to: `lemms/openllm-{size}-extended-8k`
|
890 |
+
- Check the model repository for your trained model
|
891 |
+
- Use the model for inference or further training
|
892 |
+
""")
|
893 |
+
|
894 |
+
# Resource Links Section
|
895 |
+
# Provides links to related models and resources
|
896 |
+
gr.Markdown("## 🔗 Model Resources")
|
897 |
+
gr.Markdown("""
|
898 |
+
- [📚 7k Small Model](https://huggingface.co/lemms/openllm-small-extended-7k)
|
899 |
+
- [🎯 8k Small Model](https://huggingface.co/lemms/openllm-small-extended-8k)
|
900 |
+
- [📊 Training Dataset](https://huggingface.co/datasets/lemms/openllm-training-data)
|
901 |
+
- [📖 Main Project](https://github.com/louischua/openllm)
|
902 |
+
""")
|
903 |
+
|
904 |
+
# Training Function Definition
|
905 |
+
# This function is called when the Start Training button is clicked
|
906 |
+
def start_complete_training(model_size, max_steps, learning_rate, batch_size):
|
907 |
+
"""
|
908 |
+
Execute the complete training process using OpenLLM's approach.
|
909 |
|
910 |
+
This function orchestrates the entire training pipeline:
|
911 |
+
1. Validates OpenLLM availability
|
912 |
+
2. Creates training configuration
|
913 |
+
3. Loads model and tokenizer
|
914 |
+
4. Prepares dataset
|
915 |
+
5. Sets up training environment
|
916 |
+
6. Executes training
|
917 |
+
7. Saves and uploads the trained model
|
918 |
|
919 |
+
The function provides comprehensive error handling and status updates
|
920 |
+
throughout the training process.
|
|
|
|
|
|
|
921 |
|
922 |
+
Args:
|
923 |
+
model_size: Size of the model to train ("small", "medium", "large")
|
924 |
+
max_steps: Maximum number of training steps
|
925 |
+
learning_rate: Learning rate for the optimizer
|
926 |
+
batch_size: Batch size for training
|
927 |
+
|
928 |
+
Returns:
|
929 |
+
Status message indicating the result of the training process
|
930 |
+
"""
|
931 |
+
# Validate OpenLLM availability
|
932 |
+
if not OPENLLM_AVAILABLE:
|
933 |
+
return "❌ OpenLLM custom model architecture not available. Please check the installation."
|
934 |
|
935 |
+
try:
|
936 |
+
print(f"🚀 Starting complete training process...")
|
937 |
+
print(f" - Model size: {model_size}")
|
938 |
+
print(f" - Max steps: {max_steps}")
|
939 |
+
print(f" - Learning rate: {learning_rate}")
|
940 |
+
print(f" - Batch size: {batch_size}")
|
941 |
+
|
942 |
+
# Create training configuration
|
943 |
+
# This encapsulates all training parameters
|
944 |
+
config = TrainingConfig(
|
945 |
+
model_size=model_size,
|
946 |
+
max_steps=max_steps,
|
947 |
+
learning_rate=learning_rate,
|
948 |
+
batch_size=batch_size
|
949 |
+
)
|
950 |
+
|
951 |
+
# Step 1: Load model and tokenizer using OpenLLM's approach
|
952 |
+
print("🔄 Step 1: Loading model and tokenizer...")
|
953 |
+
status = trainer.load_model_and_tokenizer(model_size)
|
954 |
+
if "❌" in status:
|
955 |
+
return status
|
956 |
+
|
957 |
+
# Step 2: Prepare dataset
|
958 |
+
print("🔄 Step 2: Preparing dataset...")
|
959 |
+
status = trainer.prepare_dataset()
|
960 |
+
if "❌" in status:
|
961 |
+
return status
|
962 |
+
|
963 |
+
# Step 3: Setup training
|
964 |
+
print("🔄 Step 3: Setting up training...")
|
965 |
+
status = trainer.setup_training(config)
|
966 |
+
if "❌" in status:
|
967 |
+
return status
|
968 |
+
|
969 |
+
# Step 4: Execute training
|
970 |
+
print("🔄 Step 4: Executing training...")
|
971 |
+
status = trainer.train_model(config)
|
972 |
+
if "❌" in status:
|
973 |
+
return status
|
974 |
+
|
975 |
+
# Step 5: Save and upload model
|
976 |
+
print("🔄 Step 5: Saving and uploading model...")
|
977 |
+
status = trainer.save_and_upload_model(config)
|
978 |
+
|
979 |
+
print("🎉 Complete training process finished!")
|
980 |
+
return f"🚀 Complete training process finished!\n{status}"
|
981 |
+
|
982 |
+
except Exception as e:
|
983 |
+
print(f"❌ Training process failed: {str(e)}")
|
984 |
+
return f"❌ Training process failed: {str(e)}"
|
985 |
+
|
986 |
+
def update_progress():
|
987 |
+
"""
|
988 |
+
Update the progress display.
|
989 |
|
990 |
+
This function is called periodically to update the progress
|
991 |
+
information displayed in the Gradio interface. It returns the
|
992 |
+
current training progress from the trainer.
|
993 |
|
994 |
+
Returns:
|
995 |
+
Current training progress dictionary
|
996 |
+
"""
|
997 |
+
return trainer.get_training_progress()
|
998 |
+
|
999 |
+
# Connect UI Components to Functions
|
1000 |
+
# This connects the Start Training button to the training function
|
1001 |
+
start_btn.click(
|
1002 |
+
fn=start_complete_training,
|
1003 |
+
inputs=[model_size, max_steps, learning_rate, batch_size],
|
1004 |
+
outputs=[status_text]
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
# Auto-refresh progress every 5 seconds during training
|
1008 |
+
# This ensures the progress display stays up to date
|
1009 |
+
demo.load(update_progress, outputs=[progress_info])
|
1010 |
+
|
1011 |
+
# Application Footer
|
1012 |
+
# Provides attribution and technical information
|
1013 |
+
gr.Markdown("---")
|
1014 |
+
gr.Markdown("**Author**: Louis Chua Bean Chong | **Project**: OpenLLM | **License**: GPL-3.0")
|
1015 |
+
gr.Markdown("**Architecture**: OpenLLM Custom GPTModel (From Uploaded Files)")
|
1016 |
+
gr.Markdown("**Tokenizer**: sentencepiece.SentencePieceProcessor()")
|
1017 |
|
1018 |
+
return demo
|
|
|
1019 |
|
1020 |
if __name__ == "__main__":
|
1021 |
+
# Launch the Gradio application
|
1022 |
+
# This starts the web interface for the training application
|
1023 |
+
demo = main()
|
1024 |
+
demo.launch()
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,26 +1,51 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
torchvision>=0.15.0
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Complete Training Dependencies for OpenLLM Space - Updated for Gradio 4.44.1
|
2 |
+
# This file includes all necessary packages for real model training
|
3 |
|
4 |
+
# Core Machine Learning Framework
|
5 |
+
torch>=2.0.0 # PyTorch deep learning framework
|
6 |
+
torchvision>=0.15.0 # Computer vision utilities
|
7 |
+
torchaudio>=2.0.0 # Audio processing utilities
|
8 |
|
9 |
+
# Hugging Face Ecosystem - Complete Training Stack
|
10 |
+
transformers>=4.30.0 # Pre-trained models and training utilities
|
11 |
+
datasets>=2.12.0 # Dataset loading and processing
|
12 |
+
tokenizers>=0.13.0 # Fast tokenization library
|
13 |
+
sentencepiece>=0.1.99 # SentencePiece tokenization (CRITICAL for OpenLLM models)
|
14 |
+
huggingface_hub>=0.34.0 # Hugging Face Hub integration
|
15 |
+
accelerate>=0.20.0 # Distributed training acceleration
|
16 |
|
17 |
+
# User Interface Framework - Updated to 4.44.1
|
18 |
+
gradio==4.44.1 # Web UI framework for ML applications (fixed version)
|
|
|
19 |
|
20 |
+
# Data Processing and Scientific Computing
|
21 |
+
numpy>=1.24.0 # Numerical computing library
|
22 |
+
pandas>=2.0.0 # Data manipulation and analysis
|
23 |
+
scipy>=1.10.0 # Scientific computing utilities
|
24 |
|
25 |
+
# Progress and Monitoring
|
26 |
+
tqdm>=4.65.0 # Progress bars for long-running operations
|
27 |
+
psutil>=5.9.0 # System and process utilities
|
28 |
|
29 |
+
# Memory and Performance Optimization
|
30 |
+
bitsandbytes>=0.41.0 # Quantization utilities for memory efficiency
|
31 |
+
peft>=0.4.0 # Parameter-Efficient Fine-Tuning
|
32 |
|
33 |
+
# Logging and Debugging
|
34 |
+
wandb>=0.15.0 # Experiment tracking (optional)
|
35 |
+
tensorboard>=2.13.0 # Training visualization (optional)
|
36 |
+
|
37 |
+
# Additional Utilities
|
38 |
+
requests>=2.31.0 # HTTP library for API calls
|
39 |
+
pillow>=9.5.0 # Image processing (if needed)
|
40 |
+
matplotlib>=3.7.0 # Plotting and visualization
|
41 |
+
seaborn>=0.12.0 # Statistical data visualization
|
42 |
+
|
43 |
+
# Development and Testing (optional)
|
44 |
+
pytest>=7.4.0 # Testing framework
|
45 |
+
black>=23.0.0 # Code formatting
|
46 |
+
flake8>=6.0.0 # Code linting
|
47 |
+
|
48 |
+
# Note: These versions are compatible with Hugging Face Spaces
|
49 |
+
# and provide stable training performance for OpenLLM models
|
50 |
+
# Gradio 4.44.1 fixes compatibility issues with JSON components
|
51 |
+
# SentencePiece is CRITICAL for OpenLLM model tokenization
|
training/data_loader.py
CHANGED
@@ -113,7 +113,9 @@ class TextDataLoader:
|
|
113 |
|
114 |
# Initialize data attribute for testing compatibility
|
115 |
# Load a small sample of data for testing purposes
|
116 |
-
self.data = self._read_chunk(
|
|
|
|
|
117 |
|
118 |
# Set random seed for reproducibility
|
119 |
random.seed(seed)
|
|
|
113 |
|
114 |
# Initialize data attribute for testing compatibility
|
115 |
# Load a small sample of data for testing purposes
|
116 |
+
self.data = self._read_chunk(
|
117 |
+
0, min(self.chunk_size, 100)
|
118 |
+
) # Load up to 100 passages for testing
|
119 |
|
120 |
# Set random seed for reproducibility
|
121 |
random.seed(seed)
|
training/model.py
CHANGED
@@ -514,7 +514,7 @@ class GPTModel(nn.Module):
|
|
514 |
# Language modeling head
|
515 |
# Always compute full logits for training and evaluation
|
516 |
logits = self.lm_head(x)
|
517 |
-
|
518 |
if targets is not None:
|
519 |
# If we have targets, compute loss
|
520 |
loss = F.cross_entropy(
|
|
|
514 |
# Language modeling head
|
515 |
# Always compute full logits for training and evaluation
|
516 |
logits = self.lm_head(x)
|
517 |
+
|
518 |
if targets is not None:
|
519 |
# If we have targets, compute loss
|
520 |
loss = F.cross_entropy(
|