Add integration guide
Browse files- integrate_auth_into_training.py +283 -0
integrate_auth_into_training.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Integration Guide: Add Authentication to Existing Training Code
|
4 |
+
|
5 |
+
This script shows how to integrate Hugging Face authentication into your
|
6 |
+
existing OpenLLM training code. Copy the relevant parts into your training script.
|
7 |
+
|
8 |
+
Usage:
|
9 |
+
Use this as a reference to update your existing training code.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import sys
|
14 |
+
import json
|
15 |
+
|
16 |
+
try:
|
17 |
+
from huggingface_hub import HfApi, login, whoami, create_repo
|
18 |
+
HF_AVAILABLE = True
|
19 |
+
except ImportError:
|
20 |
+
HF_AVAILABLE = False
|
21 |
+
print("β huggingface_hub not installed")
|
22 |
+
sys.exit(1)
|
23 |
+
|
24 |
+
|
25 |
+
def setup_hf_authentication():
|
26 |
+
"""
|
27 |
+
Set up Hugging Face authentication using GitHub secrets.
|
28 |
+
Add this function to your training script.
|
29 |
+
"""
|
30 |
+
print("π Setting up Hugging Face Authentication")
|
31 |
+
print("-" * 40)
|
32 |
+
|
33 |
+
try:
|
34 |
+
# Get token from GitHub secrets
|
35 |
+
token = os.getenv("HF_TOKEN")
|
36 |
+
if not token:
|
37 |
+
raise ValueError("HF_TOKEN not found. Please set it in GitHub repository secrets.")
|
38 |
+
|
39 |
+
# Login
|
40 |
+
login(token=token)
|
41 |
+
|
42 |
+
# Get user info
|
43 |
+
api = HfApi()
|
44 |
+
user_info = whoami()
|
45 |
+
username = user_info["name"]
|
46 |
+
|
47 |
+
print(f"β
Authentication successful!")
|
48 |
+
print(f" - Username: {username}")
|
49 |
+
print(f" - Source: GitHub secrets")
|
50 |
+
|
51 |
+
return api, username
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
print(f"β Authentication failed: {e}")
|
55 |
+
raise
|
56 |
+
|
57 |
+
|
58 |
+
def upload_model_after_training(api, username, model_dir, model_size="small", steps=8000):
|
59 |
+
"""
|
60 |
+
Upload the trained model to Hugging Face Hub.
|
61 |
+
Call this function after your training completes.
|
62 |
+
"""
|
63 |
+
try:
|
64 |
+
# Create repository name
|
65 |
+
repo_name = f"openllm-{model_size}-extended-{steps//1000}k"
|
66 |
+
repo_id = f"{username}/{repo_name}"
|
67 |
+
|
68 |
+
print(f"\nπ€ Uploading model to {repo_id}")
|
69 |
+
|
70 |
+
# Create repository
|
71 |
+
create_repo(
|
72 |
+
repo_id=repo_id,
|
73 |
+
repo_type="model",
|
74 |
+
exist_ok=True,
|
75 |
+
private=False
|
76 |
+
)
|
77 |
+
|
78 |
+
# Create model configuration
|
79 |
+
config = {
|
80 |
+
"architectures": ["GPTModel"],
|
81 |
+
"model_type": "gpt",
|
82 |
+
"vocab_size": 32000,
|
83 |
+
"n_positions": 2048,
|
84 |
+
"n_embd": 768 if model_size == "small" else 1024 if model_size == "medium" else 1280,
|
85 |
+
"n_layer": 12 if model_size == "small" else 24 if model_size == "medium" else 32,
|
86 |
+
"n_head": 12 if model_size == "small" else 16 if model_size == "medium" else 20,
|
87 |
+
"bos_token_id": 1,
|
88 |
+
"eos_token_id": 2,
|
89 |
+
"pad_token_id": 0,
|
90 |
+
"unk_token_id": 3,
|
91 |
+
"transformers_version": "4.35.0",
|
92 |
+
"use_cache": True
|
93 |
+
}
|
94 |
+
|
95 |
+
config_path = os.path.join(model_dir, "config.json")
|
96 |
+
with open(config_path, "w") as f:
|
97 |
+
json.dump(config, f, indent=2)
|
98 |
+
|
99 |
+
# Create model card
|
100 |
+
model_card = f"""# OpenLLM {model_size.capitalize()} Model ({steps} steps)
|
101 |
+
|
102 |
+
This is a trained OpenLLM {model_size} model with extended training.
|
103 |
+
|
104 |
+
## Model Details
|
105 |
+
- **Model Type**: GPT-style decoder-only transformer
|
106 |
+
- **Architecture**: Custom OpenLLM implementation
|
107 |
+
- **Training Data**: SQUAD dataset (Wikipedia passages)
|
108 |
+
- **Vocabulary Size**: 32,000 tokens
|
109 |
+
- **Sequence Length**: 2,048 tokens
|
110 |
+
- **Model Size**: {model_size.capitalize()}
|
111 |
+
- **Training Steps**: {steps:,}
|
112 |
+
|
113 |
+
## Usage
|
114 |
+
This model can be used with the OpenLLM framework for text generation and language modeling tasks.
|
115 |
+
|
116 |
+
## License
|
117 |
+
This model is released under the GNU General Public License v3.0.
|
118 |
+
|
119 |
+
## Repository
|
120 |
+
This model is hosted on Hugging Face Hub: https://huggingface.co/{repo_id}
|
121 |
+
"""
|
122 |
+
|
123 |
+
readme_path = os.path.join(model_dir, "README.md")
|
124 |
+
with open(readme_path, "w") as f:
|
125 |
+
f.write(model_card)
|
126 |
+
|
127 |
+
# Upload all files
|
128 |
+
api.upload_folder(
|
129 |
+
folder_path=model_dir,
|
130 |
+
repo_id=repo_id,
|
131 |
+
repo_type="model",
|
132 |
+
commit_message=f"Add OpenLLM {model_size} model ({steps} steps)"
|
133 |
+
)
|
134 |
+
|
135 |
+
print(f"β
Model uploaded successfully!")
|
136 |
+
print(f" - Repository: https://huggingface.co/{repo_id}")
|
137 |
+
|
138 |
+
return repo_id
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
print(f"β Upload failed: {e}")
|
142 |
+
raise
|
143 |
+
|
144 |
+
|
145 |
+
# ============================================================================
|
146 |
+
# INTEGRATION EXAMPLE: How to modify your existing training code
|
147 |
+
# ============================================================================
|
148 |
+
|
149 |
+
def example_integration():
|
150 |
+
"""
|
151 |
+
Example of how to integrate authentication into your existing training code.
|
152 |
+
"""
|
153 |
+
print("π Example: Integrating Authentication into Training")
|
154 |
+
print("=" * 55)
|
155 |
+
|
156 |
+
# Step 1: Set up authentication at the start
|
157 |
+
print("\n1οΈβ£ Setting up authentication...")
|
158 |
+
api, username = setup_hf_authentication()
|
159 |
+
|
160 |
+
# Step 2: Your existing training code goes here
|
161 |
+
print("\n2οΈβ£ Running your existing training code...")
|
162 |
+
print(" - This is where your actual training happens")
|
163 |
+
print(" - Training saves model to: ./openllm-trained")
|
164 |
+
|
165 |
+
# Simulate training completion
|
166 |
+
model_dir = "./openllm-trained"
|
167 |
+
os.makedirs(model_dir, exist_ok=True)
|
168 |
+
|
169 |
+
# Create dummy model file
|
170 |
+
with open(os.path.join(model_dir, "best_model.pt"), "w") as f:
|
171 |
+
f.write("Dummy model file")
|
172 |
+
|
173 |
+
print(" β
Training completed!")
|
174 |
+
|
175 |
+
# Step 3: Upload model after training
|
176 |
+
print("\n3οΈβ£ Uploading model...")
|
177 |
+
repo_id = upload_model_after_training(
|
178 |
+
api=api,
|
179 |
+
username=username,
|
180 |
+
model_dir=model_dir,
|
181 |
+
model_size="small",
|
182 |
+
steps=8000
|
183 |
+
)
|
184 |
+
|
185 |
+
print(f"\nπ Success! Model available at: https://huggingface.co/{repo_id}")
|
186 |
+
|
187 |
+
|
188 |
+
# ============================================================================
|
189 |
+
# CODE SNIPPETS FOR YOUR EXISTING TRAINING SCRIPT
|
190 |
+
# ============================================================================
|
191 |
+
|
192 |
+
def get_code_snippets():
|
193 |
+
"""Show code snippets to add to your existing training script."""
|
194 |
+
snippets = """
|
195 |
+
# ============================================================================
|
196 |
+
# ADD THESE IMPORTS TO YOUR TRAINING SCRIPT
|
197 |
+
# ============================================================================
|
198 |
+
|
199 |
+
import os
|
200 |
+
from huggingface_hub import HfApi, login, whoami, create_repo
|
201 |
+
import json
|
202 |
+
|
203 |
+
# ============================================================================
|
204 |
+
# ADD THIS FUNCTION TO YOUR TRAINING SCRIPT
|
205 |
+
# ============================================================================
|
206 |
+
|
207 |
+
def setup_hf_authentication():
|
208 |
+
\"\"\"Set up Hugging Face authentication using GitHub secrets.\"\"\"
|
209 |
+
token = os.getenv("HF_TOKEN")
|
210 |
+
if not token:
|
211 |
+
raise ValueError("HF_TOKEN not found. Please set it in GitHub repository secrets.")
|
212 |
+
|
213 |
+
login(token=token)
|
214 |
+
api = HfApi()
|
215 |
+
user_info = whoami()
|
216 |
+
username = user_info["name"]
|
217 |
+
|
218 |
+
print(f"β
Authentication successful: {username}")
|
219 |
+
return api, username
|
220 |
+
|
221 |
+
# ============================================================================
|
222 |
+
# ADD THIS FUNCTION TO YOUR TRAINING SCRIPT
|
223 |
+
# ============================================================================
|
224 |
+
|
225 |
+
def upload_model_after_training(api, username, model_dir, model_size="small", steps=8000):
|
226 |
+
\"\"\"Upload the trained model to Hugging Face Hub.\"\"\"
|
227 |
+
repo_name = f"openllm-{model_size}-extended-{steps//1000}k"
|
228 |
+
repo_id = f"{username}/{repo_name}"
|
229 |
+
|
230 |
+
# Create repository
|
231 |
+
create_repo(repo_id=repo_id, repo_type="model", exist_ok=True)
|
232 |
+
|
233 |
+
# Upload all files
|
234 |
+
api.upload_folder(
|
235 |
+
folder_path=model_dir,
|
236 |
+
repo_id=repo_id,
|
237 |
+
repo_type="model",
|
238 |
+
commit_message=f"Add OpenLLM {model_size} model ({steps} steps)"
|
239 |
+
)
|
240 |
+
|
241 |
+
print(f"β
Model uploaded: https://huggingface.co/{repo_id}")
|
242 |
+
return repo_id
|
243 |
+
|
244 |
+
# ============================================================================
|
245 |
+
# MODIFY YOUR MAIN TRAINING FUNCTION
|
246 |
+
# ============================================================================
|
247 |
+
|
248 |
+
def main():
|
249 |
+
# Step 1: Set up authentication
|
250 |
+
api, username = setup_hf_authentication()
|
251 |
+
|
252 |
+
# Step 2: Your existing training code
|
253 |
+
# ... your training code here ...
|
254 |
+
|
255 |
+
# Step 3: Upload after training
|
256 |
+
model_dir = "./openllm-trained" # Your model directory
|
257 |
+
repo_id = upload_model_after_training(api, username, model_dir)
|
258 |
+
|
259 |
+
print(f"π Training and upload completed!")
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
main()
|
263 |
+
"""
|
264 |
+
return snippets
|
265 |
+
|
266 |
+
|
267 |
+
def main():
|
268 |
+
"""Main function to demonstrate integration."""
|
269 |
+
print("π§ Integration Guide: Add Authentication to Existing Training")
|
270 |
+
print("=" * 65)
|
271 |
+
|
272 |
+
# Show example integration
|
273 |
+
example_integration()
|
274 |
+
|
275 |
+
# Show code snippets
|
276 |
+
print("\n" + "="*65)
|
277 |
+
print("π CODE SNIPPETS FOR YOUR EXISTING TRAINING SCRIPT")
|
278 |
+
print("="*65)
|
279 |
+
print(get_code_snippets())
|
280 |
+
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
main()
|