|
|
|
"""
|
|
OpenLLM Inference Space - Simplified Gradio Interface
|
|
Loads models from Hugging Face repositories to avoid storage limits
|
|
"""
|
|
|
|
import gradio as gr
|
|
import torch
|
|
import json
|
|
import os
|
|
import math
|
|
from pathlib import Path
|
|
from typing import Dict, Any, Optional
|
|
import logging
|
|
from dataclasses import dataclass
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
"""Configuration class for GPT model hyperparameters."""
|
|
vocab_size: int = 32000
|
|
n_layer: int = 6
|
|
n_head: int = 8
|
|
n_embd: int = 512
|
|
block_size: int = 1024
|
|
dropout: float = 0.1
|
|
bias: bool = True
|
|
model_name: str = "gpt-small"
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
"""Multi-head causal self-attention mechanism."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
|
|
self.config = config
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
self.head_dim = self.n_embd // self.n_head
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
|
self.attn_dropout = nn.Dropout(config.dropout)
|
|
self.resid_dropout = nn.Dropout(config.dropout)
|
|
|
|
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.tril(torch.ones(config.block_size, config.block_size)).view(
|
|
1, 1, config.block_size, config.block_size
|
|
),
|
|
)
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
|
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
|
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
|
|
att = F.softmax(att, dim=-1)
|
|
att = self.attn_dropout(att)
|
|
|
|
y = att @ v
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
y = self.resid_dropout(self.c_proj(y))
|
|
return y
|
|
|
|
class MLP(nn.Module):
|
|
"""Multi-Layer Perceptron for Transformer."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
|
self.gelu = nn.GELU()
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class Block(nn.Module):
|
|
"""Single Transformer block."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
class GPTModel(nn.Module):
|
|
"""Complete GPT Language Model."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(
|
|
dict(
|
|
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe=nn.Embedding(config.block_size, config.n_embd),
|
|
drop=nn.Dropout(config.dropout),
|
|
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f=nn.LayerNorm(config.n_embd),
|
|
)
|
|
)
|
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None):
|
|
device = input_ids.device
|
|
b, t = input_ids.size()
|
|
assert t <= self.config.block_size
|
|
|
|
|
|
tok_emb = self.transformer.wte(input_ids)
|
|
|
|
|
|
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
|
|
|
|
x = self.transformer.drop(tok_emb + pos_emb)
|
|
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
|
|
x = self.transformer.ln_f(x)
|
|
|
|
|
|
logits = self.lm_head(x)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
loss = F.cross_entropy(
|
|
shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1),
|
|
ignore_index=-1
|
|
)
|
|
|
|
return (loss, logits) if loss is not None else (logits,)
|
|
|
|
def generate(self, input_ids, max_length=100, temperature=1.0, **kwargs):
|
|
"""Generate text using the model."""
|
|
self.eval()
|
|
with torch.no_grad():
|
|
for _ in range(max_length - input_ids.size(1)):
|
|
|
|
idx_cond = (
|
|
input_ids
|
|
if input_ids.size(1) <= self.config.block_size
|
|
else input_ids[:, -self.config.block_size:]
|
|
)
|
|
|
|
|
|
logits = self(idx_cond)[0]
|
|
|
|
|
|
logits = logits[:, -1, :] / temperature
|
|
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
|
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
|
|
|
self.train()
|
|
return input_ids
|
|
|
|
class OpenLLMInferenceEngine:
|
|
"""Simplified inference engine that loads models from Hugging Face repositories"""
|
|
|
|
def __init__(self):
|
|
self.models = {}
|
|
self.tokenizers = {}
|
|
self.current_model = None
|
|
self.current_tokenizer = None
|
|
|
|
|
|
self.model_configs = {
|
|
"openllm-small-extended-4k": {
|
|
"name": "OpenLLM Small (4k steps)",
|
|
"description": "Small model trained for 4,000 steps - Early training stage",
|
|
"hf_repo": "lemms/openllm-small-extended-4k",
|
|
"local_path": "models/small-extended-4k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
},
|
|
"openllm-small-extended-6k": {
|
|
"name": "OpenLLM Small (6k steps)",
|
|
"description": "Small model trained for 6,000 steps - Improved coherence",
|
|
"hf_repo": "lemms/openllm-small-extended-6k",
|
|
"local_path": "models/small-extended-6k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
},
|
|
"openllm-small-extended-7k": {
|
|
"name": "OpenLLM Small (7k steps)",
|
|
"description": "Small model trained for 7,000 steps - Enhanced quality",
|
|
"hf_repo": "lemms/openllm-small-extended-7k",
|
|
"local_path": "models/small-extended-7k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
},
|
|
"openllm-small-extended-8k": {
|
|
"name": "OpenLLM Small (8k steps)",
|
|
"description": "Small model trained for 8,000 steps - Sophisticated understanding",
|
|
"hf_repo": "lemms/openllm-small-extended-8k",
|
|
"local_path": "models/small-extended-8k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
},
|
|
"openllm-small-extended-9k": {
|
|
"name": "OpenLLM Small (9k steps)",
|
|
"description": "Small model trained for 9,000 steps - Best performing model",
|
|
"hf_repo": "lemms/openllm-small-extended-9k",
|
|
"local_path": "models/small-extended-9k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
},
|
|
"openllm-small-extended-10k": {
|
|
"name": "OpenLLM Small (10k steps)",
|
|
"description": "Small model trained for 10,000 steps - Latest extended training",
|
|
"hf_repo": "lemms/openllm-small-extended-10k",
|
|
"local_path": "models/small-extended-10k",
|
|
"checkpoint": "best_model.pt",
|
|
"config": "config.json"
|
|
}
|
|
}
|
|
|
|
logger.info("π OpenLLM Inference Engine initialized")
|
|
logger.info(f"π Available models: {list(self.model_configs.keys())}")
|
|
|
|
def load_model_from_hf(self, model_id: str) -> bool:
|
|
"""Load model from Hugging Face repository"""
|
|
try:
|
|
from huggingface_hub import snapshot_download
|
|
|
|
config = self.model_configs.get(model_id)
|
|
if not config:
|
|
logger.error(f"β Unknown model ID: {model_id}")
|
|
return False
|
|
|
|
logger.info(f"π₯ Loading model from HF: {config['hf_repo']}")
|
|
|
|
|
|
local_dir = snapshot_download(
|
|
repo_id=config['hf_repo'],
|
|
repo_type="model",
|
|
local_dir=f"temp_{model_id}",
|
|
allow_patterns=["*.pt", "*.json", "*.model"]
|
|
)
|
|
|
|
logger.info(f"β
Downloaded model to: {local_dir}")
|
|
|
|
|
|
config_path = os.path.join(local_dir, "config.json")
|
|
if os.path.exists(config_path):
|
|
with open(config_path, 'r') as f:
|
|
config_data = json.load(f)
|
|
|
|
|
|
model_config = GPTConfig(
|
|
vocab_size=config_data["model_config"]["vocab_size"],
|
|
n_layer=config_data["model_config"]["n_layer"],
|
|
n_head=config_data["model_config"]["n_head"],
|
|
n_embd=config_data["model_config"]["n_embd"],
|
|
block_size=config_data["model_config"]["block_size"],
|
|
dropout=config_data["model_config"]["dropout"],
|
|
bias=config_data["model_config"]["bias"]
|
|
)
|
|
|
|
|
|
model = GPTModel(model_config)
|
|
|
|
|
|
model_path = os.path.join(local_dir, "best_model.pt")
|
|
if os.path.exists(model_path):
|
|
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
|
logger.info("β
Loaded model weights")
|
|
|
|
self.models[model_id] = model
|
|
self.current_model = model_id
|
|
|
|
logger.info(f"β
Successfully loaded model: {model_id}")
|
|
return True
|
|
else:
|
|
logger.error(f"β Config file not found: {config_path}")
|
|
return False
|
|
|
|
except Exception as e:
|
|
logger.error(f"β Failed to load model from HF {model_id}: {e}")
|
|
return False
|
|
|
|
def generate_text(self, prompt: str, model_id: str, max_length: int = 100, temperature: float = 0.7) -> str:
|
|
"""Generate text using the specified model"""
|
|
try:
|
|
|
|
if model_id not in self.models:
|
|
if not self.load_model_from_hf(model_id):
|
|
return f"β Failed to load model: {model_id}"
|
|
|
|
model = self.models[model_id]
|
|
model.eval()
|
|
|
|
|
|
|
|
tokens = [ord(c) % 32000 for c in prompt]
|
|
input_ids = torch.tensor([tokens], dtype=torch.long)
|
|
|
|
with torch.no_grad():
|
|
outputs = model.generate(
|
|
input_ids,
|
|
max_length=max_length,
|
|
temperature=temperature
|
|
)
|
|
|
|
|
|
generated_text = ''.join([chr(t % 65536) for t in outputs[0].tolist()])
|
|
return generated_text
|
|
|
|
except Exception as e:
|
|
logger.error(f"β Generation failed: {e}")
|
|
return f"β Generation failed: {str(e)}"
|
|
|
|
|
|
inference_engine = OpenLLMInferenceEngine()
|
|
|
|
def generate_text_interface(prompt: str, model_choice: str, max_length: int, temperature: float) -> str:
|
|
"""Gradio interface function for text generation"""
|
|
try:
|
|
result = inference_engine.generate_text(
|
|
prompt=prompt,
|
|
model_id=model_choice,
|
|
max_length=max_length,
|
|
temperature=temperature
|
|
)
|
|
return result
|
|
except Exception as e:
|
|
return f"β Error: {str(e)}"
|
|
|
|
def get_model_info(model_choice: str) -> str:
|
|
"""Get information about the selected model"""
|
|
config = inference_engine.model_configs.get(model_choice)
|
|
if config:
|
|
return f"""
|
|
**Model Information:**
|
|
- **Name**: {config['name']}
|
|
- **Description**: {config['description']}
|
|
- **Repository**: {config['hf_repo']}
|
|
- **Status**: Ready to load
|
|
"""
|
|
else:
|
|
return "β Unknown model selected"
|
|
|
|
|
|
with gr.Blocks(title="OpenLLM Inference Space", theme=gr.themes.Soft()) as demo:
|
|
gr.Markdown("# π OpenLLM Inference Space")
|
|
gr.Markdown("Welcome to the OpenLLM Inference Space! Select a model and generate text.")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
gr.Markdown("## π― Model Selection")
|
|
model_choice = gr.Dropdown(
|
|
choices=list(inference_engine.model_configs.keys()),
|
|
value="openllm-small-extended-10k",
|
|
label="Select Model",
|
|
info="Choose from our trained models"
|
|
)
|
|
|
|
model_info = gr.Markdown("Select a model to see information")
|
|
|
|
def update_model_info(choice):
|
|
return get_model_info(choice)
|
|
|
|
model_choice.change(fn=update_model_info, inputs=model_choice, outputs=model_info)
|
|
|
|
with gr.Column(scale=2):
|
|
gr.Markdown("## βοΈ Text Generation")
|
|
prompt_input = gr.Textbox(
|
|
label="Enter your prompt",
|
|
placeholder="The future of artificial intelligence...",
|
|
lines=3
|
|
)
|
|
|
|
with gr.Row():
|
|
max_length = gr.Slider(
|
|
minimum=10,
|
|
maximum=500,
|
|
value=100,
|
|
step=10,
|
|
label="Max Length",
|
|
info="Number of tokens to generate"
|
|
)
|
|
temperature = gr.Slider(
|
|
minimum=0.1,
|
|
maximum=2.0,
|
|
value=0.7,
|
|
step=0.1,
|
|
label="Temperature",
|
|
info="Controls randomness (higher = more random)"
|
|
)
|
|
|
|
generate_btn = gr.Button("π Generate Text", variant="primary")
|
|
output_text = gr.Textbox(label="Generated Text", lines=10)
|
|
|
|
gr.Markdown("## π Available Models")
|
|
gr.Markdown("""
|
|
| Model | Training Steps | Description | Best Loss |
|
|
|-------|---------------|-------------|-----------|
|
|
| **4k Model** | 4,000 | Early training stage, basic language patterns | ~6.2 |
|
|
| **6k Model** | 6,000 | Improved coherence, better vocabulary usage | ~5.8 |
|
|
| **7k Model** | 7,000 | Enhanced text generation quality | ~5.5 |
|
|
| **8k Model** | 8,000 | More sophisticated language understanding | ~5.3 |
|
|
| **9k Model** | 9,000 | Best performing model (latest training) | ~5.2 |
|
|
| **10k Model** | 10,000 | Latest extended training, maximum performance | ~5.22 |
|
|
""")
|
|
|
|
|
|
generate_btn.click(
|
|
fn=generate_text_interface,
|
|
inputs=[prompt_input, model_choice, max_length, temperature],
|
|
outputs=output_text
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|
|
|