Spaces:
Sleeping
Sleeping
Upload text_anonymizer_fixed.py
Browse files- text_anonymizer_fixed.py +462 -0
text_anonymizer_fixed.py
ADDED
|
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
import io
|
| 6 |
+
|
| 7 |
+
class TextAnonymizer:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.person_counter = 0
|
| 10 |
+
self.company_counter = 0
|
| 11 |
+
self.amount_counter = 0
|
| 12 |
+
self.percent_counter = 0
|
| 13 |
+
|
| 14 |
+
# دیکشنری برای نگهداری تبدیلها
|
| 15 |
+
self.person_mapping = {}
|
| 16 |
+
self.company_mapping = {}
|
| 17 |
+
self.amount_mapping = {}
|
| 18 |
+
self.percent_mapping = {}
|
| 19 |
+
|
| 20 |
+
def reset_counters(self):
|
| 21 |
+
"""بازنشانی شمارندهها برای پردازش جدید"""
|
| 22 |
+
self.person_counter = 0
|
| 23 |
+
self.company_counter = 0
|
| 24 |
+
self.amount_counter = 0
|
| 25 |
+
self.percent_counter = 0
|
| 26 |
+
self.person_mapping.clear()
|
| 27 |
+
self.company_mapping.clear()
|
| 28 |
+
self.amount_mapping.clear()
|
| 29 |
+
self.percent_mapping.clear()
|
| 30 |
+
|
| 31 |
+
def detect_financial_amounts(self, text):
|
| 32 |
+
"""تشخیص مبالغ مالی (فارسی و انگلیسی)"""
|
| 33 |
+
patterns = [
|
| 34 |
+
# الگوهای انگلیسی
|
| 35 |
+
r'\$[\d,]+(?:\.\d{2})?', # $1,000.00
|
| 36 |
+
r'[\d,]+\s*(?:dollars?|USD|usd|Dollars?)', # 1000 dollars
|
| 37 |
+
r'[\d,]+\s*(?:million|billion|thousand|Million|Billion|Thousand)', # 1 million
|
| 38 |
+
r'[\d,]+(?:\.\d+)?\s*(?:M|B|K|m|b|k)', # 1.5M, 2B, 500K
|
| 39 |
+
r'€[\d,]+(?:\.\d{2})?', # €1,000.00
|
| 40 |
+
r'£[\d,]+(?:\.\d{2})?', # £1,000.00
|
| 41 |
+
|
| 42 |
+
# الگوهای فارسی - ارقام فارسی
|
| 43 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد|تریلیون)\s*(?:و\s*[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد)?)?\s*(?:تومان|ریال|دلار|یورو|درهم)',
|
| 44 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:همت)', # ۳۷ همت
|
| 45 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد)\s*(?:تومان|ریال|دلار)',
|
| 46 |
+
|
| 47 |
+
# الگوهای ترکیبی
|
| 48 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9\d]+[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]*\s*(?:هزار|میلیون|میلیارد)',
|
| 49 |
+
r'بیش\s*از\s*[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد|همت)',
|
| 50 |
+
r'حدود\s*[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد|همت)',
|
| 51 |
+
r'نزدیک\s*به\s*[\u06F0-\u06F9\u06F0-\u06F9\d,\u060C]+\s*(?:هزار|میلیون|میلیارد|همت)',
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
amounts = []
|
| 55 |
+
for pattern in patterns:
|
| 56 |
+
matches = re.finditer(pattern, text, re.IGNORECASE)
|
| 57 |
+
for match in matches:
|
| 58 |
+
amounts.append((match.start(), match.end(), match.group()))
|
| 59 |
+
|
| 60 |
+
return amounts
|
| 61 |
+
|
| 62 |
+
def detect_percentages(self, text):
|
| 63 |
+
"""تشخیص درصدها (فارسی و انگلیسی)"""
|
| 64 |
+
patterns = [
|
| 65 |
+
r'\d+(?:\.\d+)?%', # انگلیسی: 15%, 18.5%
|
| 66 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9]+(?:\.[\u06F0-\u06F9\u06F0-\u06F9]+)?\s*درصد', # فارسی: ۱۵ درصد
|
| 67 |
+
r'[\u06F0-\u06F9\u06F0-\u06F9]+(?:\.[\u06F0-\u06F9\u06F0-\u06F9]+)?%', # ترکیبی: ۱۵%
|
| 68 |
+
]
|
| 69 |
+
percentages = []
|
| 70 |
+
for pattern in patterns:
|
| 71 |
+
matches = re.finditer(pattern, text)
|
| 72 |
+
for match in matches:
|
| 73 |
+
percentages.append((match.start(), match.end(), match.group()))
|
| 74 |
+
|
| 75 |
+
return percentages
|
| 76 |
+
|
| 77 |
+
def detect_names_regex(self, text):
|
| 78 |
+
"""تشخیص اسامی اشخاص (فارسی و انگلیسی)"""
|
| 79 |
+
patterns = [
|
| 80 |
+
# الگوهای انگلیسی
|
| 81 |
+
r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', # John Smith
|
| 82 |
+
r'\b[A-Z][a-z]+ [A-Z]\. [A-Z][a-z]+\b', # John M. Smith
|
| 83 |
+
r'\b[A-Z][a-z]+ [A-Z][a-z]+ [A-Z][a-z]+\b', # John Michael Smith
|
| 84 |
+
r'\bMr\. [A-Z][a-z]+\b', # Mr. Smith
|
| 85 |
+
r'\bMs\. [A-Z][a-z]+\b', # Ms. Johnson
|
| 86 |
+
r'\bDr\. [A-Z][a-z]+\b', # Dr. Brown
|
| 87 |
+
|
| 88 |
+
# الگوهای فارسی - نامهای کامل
|
| 89 |
+
r'[\u0600-\u06FF]+\s+[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+)?(?:\s+[\u0600-\u06FF]+)?', # محمد ایرانی، جواد زارعپور
|
| 90 |
+
|
| 91 |
+
# الگوهای خاص فارسی با عناوین
|
| 92 |
+
r'(?:دکتر|آقای|خانم|مهندس|استاد)\s+[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,3}',
|
| 93 |
+
|
| 94 |
+
# الگوی مدیرعامل و سمتها
|
| 95 |
+
r'[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,3}،\s*مدیرعامل',
|
| 96 |
+
r'[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,3}،\s*(?:مدیر|رئیس|نایب)',
|
| 97 |
+
|
| 98 |
+
# نامهای بین عبارتها
|
| 99 |
+
r'(?:با\s+(?:حضور|سکانداری)\s+)[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,3}',
|
| 100 |
+
r'(?:امضای\s+(?:مشترک\s+)?(?:«)?)[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,3}(?:»)?',
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
names = []
|
| 104 |
+
processed_spans = set() # برای جلوگیری از تداخل
|
| 105 |
+
|
| 106 |
+
for pattern in patterns:
|
| 107 |
+
matches = re.finditer(pattern, text)
|
| 108 |
+
for match in matches:
|
| 109 |
+
start, end = match.start(), match.end()
|
| 110 |
+
name = match.group().strip()
|
| 111 |
+
|
| 112 |
+
# پاک کردن عناوین و کلمات اضافی
|
| 113 |
+
name = re.sub(r'^(?:دکتر|آقای|خانم|مهندس|استاد)\s+', '', name)
|
| 114 |
+
name = re.sub(r'،\s*(?:مدیرعامل|مدیر|رئیس|نایب).*', '', name)
|
| 115 |
+
name = re.sub(r'^(?:با\s+(?:حضور|سکانداری)\s+)', '', name)
|
| 116 |
+
name = re.sub(r'^(?:امضای\s+(?:مشترک\s+)?(?:«)?)', '', name)
|
| 117 |
+
name = name.strip('،» ()')
|
| 118 |
+
|
| 119 |
+
# بررسی طول نام و عدم تداخل
|
| 120 |
+
if (len(name.split()) >= 2 and
|
| 121 |
+
len(name) > 3 and
|
| 122 |
+
not any(start < existing_end and end > existing_start
|
| 123 |
+
for existing_start, existing_end in processed_spans)):
|
| 124 |
+
|
| 125 |
+
names.append((start, end, name))
|
| 126 |
+
processed_spans.add((start, end))
|
| 127 |
+
|
| 128 |
+
return names
|
| 129 |
+
|
| 130 |
+
def detect_companies_regex(self, text):
|
| 131 |
+
"""تشخیص شرکتها (فارسی و انگلیسی)"""
|
| 132 |
+
# الگوهای عمومی انگلیسی
|
| 133 |
+
general_patterns = [
|
| 134 |
+
r'\b[A-Z][a-z]+ (?:Inc|Corp|LLC|Ltd|Company|Co|Corporation|Group|Technologies|Tech|Systems|Solutions|Services|International|Global|Enterprises)\.?\b',
|
| 135 |
+
r'\b[A-Z][A-Z]+ (?:Inc|Corp|LLC|Ltd|Company|Co|Corporation)\.?\b', # مثل IBM Corp
|
| 136 |
+
r'\b[A-Z][a-z]+ [A-Z][a-z]+ (?:Inc|Corp|LLC|Ltd|Company|Co|Corporation)\.?\b', # مثل Apple Inc
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
# شرکتهای مشهور انگلیسی
|
| 140 |
+
tech_companies = r'\b(?:Apple|Microsoft|Google|Amazon|Facebook|Meta|Netflix|Tesla|Oracle|IBM|Intel|Cisco|Adobe|Salesforce|PayPal|Uber|Airbnb|Twitter|LinkedIn|NVIDIA|AMD|Zoom|Slack|Dropbox|Spotify)\b'
|
| 141 |
+
auto_companies = r'\b(?:Toyota|Honda|Ford|BMW|Mercedes|Audi|Volkswagen|Nissan|Hyundai|Kia|Mazda|Subaru|Volvo|Porsche|Ferrari|Lamborghini)\b'
|
| 142 |
+
finance_companies = r'\b(?:JPMorgan|Goldman Sachs|Morgan Stanley|Bank of America|Wells Fargo|Chase|Citibank|American Express|Visa|Mastercard|PayPal)\b'
|
| 143 |
+
retail_companies = r'\b(?:Walmart|Target|Costco|Amazon|eBay|Alibaba|Nike|Adidas|Zara|H&M|IKEA|Starbucks|McDonalds|KFC|Subway)\b'
|
| 144 |
+
|
| 145 |
+
# الگوهای فارسی - شرکتها و سازمانها
|
| 146 |
+
persian_company_patterns = [
|
| 147 |
+
# الگوی کلی شرکت
|
| 148 |
+
r'شرکت\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 149 |
+
r'گروه\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 150 |
+
r'هلدینگ\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 151 |
+
r'بانک\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 152 |
+
r'بیمه\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 153 |
+
r'پتروشیمی\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 154 |
+
r'صنایع\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 155 |
+
r'فولاد\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 156 |
+
r'سازمان\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 157 |
+
r'موسسه\s+[\u0600-\u06FF\s]+(?:[\u0600-\u06FF])',
|
| 158 |
+
|
| 159 |
+
# شرکتهای خاص از نمونهها
|
| 160 |
+
r'ایران\s*خودرو',
|
| 161 |
+
r'همراه\s*اول',
|
| 162 |
+
r'فولاد\s*مبارکه(?:\s+اصفهان)?',
|
| 163 |
+
r'بانک\s+(?:ملت|پاسارگاد|سرمایه|مرکزی|کشاورزی)',
|
| 164 |
+
r'بیمه\s+(?:پارسیان|سامان)',
|
| 165 |
+
r'پتروشیمی\s+(?:پارس|بوعلی\s*سینا|اروند)',
|
| 166 |
+
|
| 167 |
+
# الگوی با مخفف
|
| 168 |
+
r'[\u0600-\u06FF\s]+\s*\([\u0600-\u06FF\s]+\)', # مثل تأمین (تیپیکو)
|
| 169 |
+
|
| 170 |
+
# الگوی نامهای مرکب
|
| 171 |
+
r'[\u0600-\u06FF]+(?:\s+[\u0600-\u06FF]+){1,4}(?:\s+(?:شرکت|گروه|بانک|بیمه|صنایع))?',
|
| 172 |
+
]
|
| 173 |
+
|
| 174 |
+
# ترکیب تمام الگوها
|
| 175 |
+
all_patterns = general_patterns + [
|
| 176 |
+
tech_companies,
|
| 177 |
+
auto_companies,
|
| 178 |
+
finance_companies,
|
| 179 |
+
retail_companies
|
| 180 |
+
] + persian_company_patterns
|
| 181 |
+
|
| 182 |
+
companies = []
|
| 183 |
+
processed_spans = set() # برای جلوگیری از تداخل
|
| 184 |
+
|
| 185 |
+
for pattern in all_patterns:
|
| 186 |
+
matches = re.finditer(pattern, text, re.IGNORECASE)
|
| 187 |
+
for match in matches:
|
| 188 |
+
start, end = match.start(), match.end()
|
| 189 |
+
company = match.group().strip()
|
| 190 |
+
|
| 191 |
+
# فیلتر کردن نتایج خیلی کوتاه یا طولانی
|
| 192 |
+
if (len(company) > 2 and len(company) < 100 and
|
| 193 |
+
not any(start < existing_end and end > existing_start
|
| 194 |
+
for existing_start, existing_end in processed_spans)):
|
| 195 |
+
|
| 196 |
+
companies.append((start, end, company))
|
| 197 |
+
processed_spans.add((start, end))
|
| 198 |
+
|
| 199 |
+
return companies
|
| 200 |
+
|
| 201 |
+
def anonymize_text(self, text):
|
| 202 |
+
"""ناشناسسازی متن با regex"""
|
| 203 |
+
if not text or pd.isna(text):
|
| 204 |
+
return text
|
| 205 |
+
|
| 206 |
+
replacements = []
|
| 207 |
+
|
| 208 |
+
# تشخیص اسامی اشخاص
|
| 209 |
+
names = self.detect_names_regex(text)
|
| 210 |
+
for start, end, name in names:
|
| 211 |
+
if name not in self.person_mapping:
|
| 212 |
+
self.person_counter += 1
|
| 213 |
+
self.person_mapping[name] = f"person-{self.person_counter:02d}"
|
| 214 |
+
replacements.append((start, end, self.person_mapping[name]))
|
| 215 |
+
|
| 216 |
+
# تشخیص شرکتها
|
| 217 |
+
companies = self.detect_companies_regex(text)
|
| 218 |
+
for start, end, company in companies:
|
| 219 |
+
if company not in self.company_mapping:
|
| 220 |
+
self.company_counter += 1
|
| 221 |
+
self.company_mapping[company] = f"company-{self.company_counter:02d}"
|
| 222 |
+
replacements.append((start, end, self.company_mapping[company]))
|
| 223 |
+
|
| 224 |
+
# تشخیص مبالغ مالی
|
| 225 |
+
amounts = self.detect_financial_amounts(text)
|
| 226 |
+
for start, end, amount in amounts:
|
| 227 |
+
if amount not in self.amount_mapping:
|
| 228 |
+
self.amount_counter += 1
|
| 229 |
+
self.amount_mapping[amount] = f"amount-{self.amount_counter:02d}"
|
| 230 |
+
replacements.append((start, end, self.amount_mapping[amount]))
|
| 231 |
+
|
| 232 |
+
# تشخیص درصدها
|
| 233 |
+
percentages = self.detect_percentages(text)
|
| 234 |
+
for start, end, percent in percentages:
|
| 235 |
+
if percent not in self.percent_mapping:
|
| 236 |
+
self.percent_counter += 1
|
| 237 |
+
self.percent_mapping[percent] = f"percent-{self.percent_counter:02d}"
|
| 238 |
+
replacements.append((start, end, self.percent_mapping[percent]))
|
| 239 |
+
|
| 240 |
+
# حذف تداخلها و مرتبسازی
|
| 241 |
+
replacements = self.remove_overlaps(replacements)
|
| 242 |
+
replacements.sort(key=lambda x: x[0], reverse=True)
|
| 243 |
+
|
| 244 |
+
# اعمال جایگزینیها
|
| 245 |
+
result = text
|
| 246 |
+
for start, end, replacement in replacements:
|
| 247 |
+
result = result[:start] + replacement + result[end:]
|
| 248 |
+
|
| 249 |
+
return result
|
| 250 |
+
|
| 251 |
+
def remove_overlaps(self, replacements):
|
| 252 |
+
"""حذف تداخلها در جایگزینیها"""
|
| 253 |
+
if not replacements:
|
| 254 |
+
return []
|
| 255 |
+
|
| 256 |
+
# مرتبسازی بر اساس موقعیت شروع
|
| 257 |
+
replacements.sort(key=lambda x: x[0])
|
| 258 |
+
|
| 259 |
+
filtered = []
|
| 260 |
+
for start, end, replacement in replacements:
|
| 261 |
+
# بررسی تداخل با آخرین جایگزینی اضافه شده
|
| 262 |
+
if not filtered or start >= filtered[-1][1]:
|
| 263 |
+
filtered.append((start, end, replacement))
|
| 264 |
+
|
| 265 |
+
return filtered
|
| 266 |
+
|
| 267 |
+
def get_mapping_summary(self):
|
| 268 |
+
"""خلاصهای از تبدیلهای انجام شده"""
|
| 269 |
+
summary = []
|
| 270 |
+
|
| 271 |
+
if self.person_mapping:
|
| 272 |
+
summary.append("**اسامی اشخاص:**")
|
| 273 |
+
for original, anonymized in self.person_mapping.items():
|
| 274 |
+
summary.append(f"- {original} → {anonymized}")
|
| 275 |
+
summary.append("")
|
| 276 |
+
|
| 277 |
+
if self.company_mapping:
|
| 278 |
+
summary.append("**نام شرکتها:**")
|
| 279 |
+
for original, anonymized in self.company_mapping.items():
|
| 280 |
+
summary.append(f"- {original} → {anonymized}")
|
| 281 |
+
summary.append("")
|
| 282 |
+
|
| 283 |
+
if self.amount_mapping:
|
| 284 |
+
summary.append("**مبالغ مالی:**")
|
| 285 |
+
for original, anonymized in self.amount_mapping.items():
|
| 286 |
+
summary.append(f"- {original} → {anonymized}")
|
| 287 |
+
summary.append("")
|
| 288 |
+
|
| 289 |
+
if self.percent_mapping:
|
| 290 |
+
summary.append("**درصدها:**")
|
| 291 |
+
for original, anonymized in self.percent_mapping.items():
|
| 292 |
+
summary.append(f"- {original} → {anonymized}")
|
| 293 |
+
|
| 294 |
+
return "\n".join(summary) if summary else "هیچ موجودیت حساسی یافت نشد."
|
| 295 |
+
|
| 296 |
+
# ایجاد نمونه از کلاس ناشناسساز
|
| 297 |
+
anonymizer = TextAnonymizer()
|
| 298 |
+
|
| 299 |
+
def process_csv(file):
|
| 300 |
+
"""پردازش فایل CSV"""
|
| 301 |
+
try:
|
| 302 |
+
# بازنشانی شمارندهها
|
| 303 |
+
anonymizer.reset_counters()
|
| 304 |
+
|
| 305 |
+
# بررسی فایل
|
| 306 |
+
if file is None:
|
| 307 |
+
return None, "لطفاً فایل CSV آپلود کنید.", "", None
|
| 308 |
+
|
| 309 |
+
# خواندن فایل CSV
|
| 310 |
+
if file.name.endswith('.csv'):
|
| 311 |
+
df = pd.read_csv(file.name)
|
| 312 |
+
else:
|
| 313 |
+
return None, "لطفاً فایل CSV آپلو�� کنید.", "", None
|
| 314 |
+
|
| 315 |
+
# بررسی وجود ستون original_text
|
| 316 |
+
if 'original_text' not in df.columns:
|
| 317 |
+
available_columns = ', '.join(df.columns.tolist())
|
| 318 |
+
return None, f"ستون 'original_text' در فایل یافت نشد. ستونهای موجود: {available_columns}", "", None
|
| 319 |
+
|
| 320 |
+
# ایجاد کپی از دیتافریم
|
| 321 |
+
result_df = df.copy()
|
| 322 |
+
|
| 323 |
+
# ناشناسسازی متنهای ستون original_text
|
| 324 |
+
result_df['anonymized_text'] = df['original_text'].apply(anonymizer.anonymize_text)
|
| 325 |
+
|
| 326 |
+
# تبدیل به CSV برای دانلود
|
| 327 |
+
output = io.StringIO()
|
| 328 |
+
result_df.to_csv(output, index=False, encoding='utf-8')
|
| 329 |
+
csv_content = output.getvalue()
|
| 330 |
+
|
| 331 |
+
# ایجاد فایل CSV برای دانلود
|
| 332 |
+
output_file = "anonymized_data.csv"
|
| 333 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
| 334 |
+
f.write(csv_content)
|
| 335 |
+
|
| 336 |
+
# نمایش نمونه از نتایج
|
| 337 |
+
sample_df = result_df[['original_text', 'anonymized_text']].head(10)
|
| 338 |
+
|
| 339 |
+
# خلاصه تبدیلها
|
| 340 |
+
mapping_summary = anonymizer.get_mapping_summary()
|
| 341 |
+
|
| 342 |
+
return output_file, f"✅ پردازش کامل شد! {len(df)} ردیف پردازش شد.", mapping_summary, sample_df
|
| 343 |
+
|
| 344 |
+
except Exception as e:
|
| 345 |
+
return None, f"❌ خطا در پردازش فایل: {str(e)}", "", None
|
| 346 |
+
|
| 347 |
+
def process_single_text(text):
|
| 348 |
+
"""پردازش تک متن"""
|
| 349 |
+
if not text.strip():
|
| 350 |
+
return "", "لطفاً متنی وارد کنید."
|
| 351 |
+
|
| 352 |
+
anonymizer.reset_counters()
|
| 353 |
+
anonymized = anonymizer.anonymize_text(text)
|
| 354 |
+
mapping_summary = anonymizer.get_mapping_summary()
|
| 355 |
+
|
| 356 |
+
return anonymized, mapping_summary
|
| 357 |
+
|
| 358 |
+
# ایجاد رابط کاربری Gradio
|
| 359 |
+
with gr.Blocks(title="ناشناسسازی متن", theme=gr.themes.Soft()) as demo:
|
| 360 |
+
gr.Markdown("""
|
| 361 |
+
# 🔒 برنامه ناشناسسازی متن (نسخه Regex)
|
| 362 |
+
|
| 363 |
+
⚡ **وضعیت:** حالت سریع - بدون نیاز به spaCy
|
| 364 |
+
|
| 365 |
+
این برنامه متنهای شما را ناشناس میکند و اطلاعات حساس زیر را جایگزین میکند:
|
| 366 |
+
- 👤 **اسامی اشخاص** → person-01, person-02, ...
|
| 367 |
+
- 🏢 **نام شرکتها** → company-01, company-02, ...
|
| 368 |
+
- 💰 **مبالغ مالی** → amount-01, amount-02, ...
|
| 369 |
+
- 📊 **درصدها** → percent-01, percent-02, ...
|
| 370 |
+
|
| 371 |
+
**نسخه ۱:** آدرسها، مکانها و تاریخها ناشناسسازی نمیشوند.
|
| 372 |
+
""")
|
| 373 |
+
|
| 374 |
+
with gr.Tabs():
|
| 375 |
+
# تب پردازش فایل CSV
|
| 376 |
+
with gr.TabItem("📁 پردازش فایل CSV"):
|
| 377 |
+
gr.Markdown("### آپلود فایل CSV با ستون 'original_text'")
|
| 378 |
+
|
| 379 |
+
with gr.Row():
|
| 380 |
+
with gr.Column():
|
| 381 |
+
file_input = gr.File(
|
| 382 |
+
label="فایل CSV را انتخاب کنید",
|
| 383 |
+
file_types=[".csv"],
|
| 384 |
+
type="filepath"
|
| 385 |
+
)
|
| 386 |
+
process_btn = gr.Button("🚀 شروع پردازش", variant="primary")
|
| 387 |
+
|
| 388 |
+
with gr.Column():
|
| 389 |
+
status_output = gr.Textbox(
|
| 390 |
+
label="وضعیت",
|
| 391 |
+
interactive=False
|
| 392 |
+
)
|
| 393 |
+
download_file = gr.File(
|
| 394 |
+
label="دانلود فایل ناشناسسازی شده",
|
| 395 |
+
interactive=False
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
with gr.Row():
|
| 399 |
+
with gr.Column():
|
| 400 |
+
mapping_output = gr.Markdown(
|
| 401 |
+
label="خلاصه تبدیلها",
|
| 402 |
+
value="خلاصه تبدیلها اینجا نمایش داده میشود..."
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
with gr.Column():
|
| 406 |
+
sample_output = gr.Dataframe(
|
| 407 |
+
label="نمونه نتایج (۱۰ ردیف اول)",
|
| 408 |
+
interactive=False
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# تب تست تک متن
|
| 412 |
+
with gr.TabItem("📝 تست تک متن"):
|
| 413 |
+
gr.Markdown("### تست ناشناسسازی روی یک متن")
|
| 414 |
+
|
| 415 |
+
with gr.Row():
|
| 416 |
+
with gr.Column():
|
| 417 |
+
text_input = gr.Textbox(
|
| 418 |
+
label="متن اصلی",
|
| 419 |
+
placeholder="متن خود را اینجا وارد کنید...",
|
| 420 |
+
lines=5
|
| 421 |
+
)
|
| 422 |
+
test_btn = gr.Button("🔍 ناشناسسازی", variant="primary")
|
| 423 |
+
|
| 424 |
+
with gr.Column():
|
| 425 |
+
text_output = gr.Textbox(
|
| 426 |
+
label="متن ناشناسسازی شده",
|
| 427 |
+
lines=5,
|
| 428 |
+
interactive=False
|
| 429 |
+
)
|
| 430 |
+
text_mapping = gr.Markdown(
|
| 431 |
+
label="تبدیلهای انجام شده"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# اتصال رویدادها
|
| 435 |
+
process_btn.click(
|
| 436 |
+
fn=process_csv,
|
| 437 |
+
inputs=[file_input],
|
| 438 |
+
outputs=[download_file, status_output, mapping_output, sample_output]
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
test_btn.click(
|
| 442 |
+
fn=process_single_text,
|
| 443 |
+
inputs=[text_input],
|
| 444 |
+
outputs=[text_output, text_mapping]
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# مثال در بخش تست
|
| 448 |
+
gr.Examples(
|
| 449 |
+
examples=[
|
| 450 |
+
["John Smith works at Microsoft and earned $50,000 with a 15% bonus."],
|
| 451 |
+
["Sarah Johnson from Google Inc. reported revenues of $2.5 million, representing a 25% increase."],
|
| 452 |
+
["The CEO of Apple, Tim Cook, announced profits of $1.2B with 18.5% growth rate."],
|
| 453 |
+
["Dr. Michael Brown from IBM Corp. received €75,000 salary increase of 12%."],
|
| 454 |
+
["Ms. Lisa Wilson at Amazon reported quarterly results of £500K with 8.7% margin."]
|
| 455 |
+
],
|
| 456 |
+
inputs=[text_input],
|
| 457 |
+
label="نمونه متنها"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# اجرای برنامه
|
| 461 |
+
if __name__ == "__main__":
|
| 462 |
+
demo.launch()
|