lehduong's picture
Upload folder using huggingface_hub
038856e verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import einops
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from typing import Any, Tuple, Optional
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from .layers import LLamaFeedForward, RMSNorm
# import frasch
def modulate(x, scale):
return x * (1 + scale)
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.hidden_size = hidden_size
self.frequency_embedding_size = frequency_embedding_size
self.mlp = nn.Sequential(
nn.Linear(self.frequency_embedding_size, self.hidden_size),
nn.SiLU(),
nn.Linear(self.hidden_size, self.hidden_size),
)
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
).to(t.device)
args = t[:, :, None] * freqs[None, :]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_freq = t_freq.to(self.mlp[0].weight.dtype)
return self.mlp(t_freq)
class FinalLayer(nn.Module):
def __init__(self, hidden_size, num_patches, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
self.linear = nn.Linear(hidden_size, num_patches * out_channels)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(min(hidden_size, 1024), hidden_size),
)
def forward(self, x, c):
scale = self.adaLN_modulation(c)
x = modulate(self.norm_final(x), scale)
x = self.linear(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
n_heads,
n_kv_heads=None,
qk_norm=False,
y_dim=0,
base_seqlen=None,
proportional_attn=False,
attention_dropout=0.0,
max_position_embeddings=384,
):
super().__init__()
self.dim = dim
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads or n_heads
self.qk_norm = qk_norm
self.y_dim = y_dim
self.base_seqlen = base_seqlen
self.proportional_attn = proportional_attn
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.head_dim = dim // n_heads
self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
if y_dim > 0:
self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
self.gate = nn.Parameter(torch.zeros(n_heads))
self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
if qk_norm:
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
if y_dim > 0:
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
else:
self.ky_norm = nn.Identity()
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
self.ky_norm = nn.Identity()
@staticmethod
def apply_rotary_emb(xq, xk, freqs_cis):
# xq, xk: [batch_size, seq_len, n_heads, head_dim]
# freqs_cis: [1, seq_len, 1, head_dim]
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
xq_complex = torch.view_as_complex(xq_)
xk_complex = torch.view_as_complex(xk_)
freqs_cis = freqs_cis.unsqueeze(2)
# Apply freqs_cis
xq_out = xq_complex * freqs_cis
xk_out = xk_complex * freqs_cis
# Convert back to real numbers
xq_out = torch.view_as_real(xq_out).flatten(-2)
xk_out = torch.view_as_real(xk_out).flatten(-2)
return xq_out.type_as(xq), xk_out.type_as(xk)
# copied from huggingface modeling_llama.py
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def forward(
self,
x,
x_mask,
freqs_cis,
y=None,
y_mask=None,
init_cache=False,
):
bsz, seqlen, _ = x.size()
xq = self.wq(x)
xk = self.wk(x)
xv = self.wv(x)
if x_mask is None:
x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
inp_dtype = xq.dtype
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
if self.n_kv_heads != self.n_heads:
n_rep = self.n_heads // self.n_kv_heads
xk = xk.repeat_interleave(n_rep, dim=2)
xv = xv.repeat_interleave(n_rep, dim=2)
freqs_cis = freqs_cis.to(xq.device)
xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
if inp_dtype in [torch.float16, torch.bfloat16]:
# begin var_len flash attn
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states.to(inp_dtype),
key_states.to(inp_dtype),
value_states.to(inp_dtype),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=0.0,
causal=False,
softmax_scale=None,
softcap=30,
)
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
else:
output = (
F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
xk.permute(0, 2, 1, 3),
xv.permute(0, 2, 1, 3),
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
scale=None,
)
.permute(0, 2, 1, 3)
.to(inp_dtype)
) #ok
if hasattr(self, "wk_y"):
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
n_rep = self.n_heads // self.n_kv_heads
# if n_rep >= 1:
# yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
# yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
if n_rep >= 1:
yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
output_y = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
yk.permute(0, 2, 1, 3),
yv.permute(0, 2, 1, 3),
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
).permute(0, 2, 1, 3)
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
output = output + output_y
output = output.flatten(-2)
output = self.wo(output)
return output.to(inp_dtype)
class TransformerBlock(nn.Module):
"""
Corresponds to the Transformer block in the JAX code.
"""
def __init__(
self,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
y_dim,
max_position_embeddings,
):
super().__init__()
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
self.feed_forward = LLamaFeedForward(
dim=dim,
hidden_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(min(dim, 1024), 4 * dim),
)
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
def forward(
self,
x,
x_mask,
freqs_cis,
y,
y_mask,
adaln_input=None,
):
if adaln_input is not None:
scales_gates = self.adaLN_modulation(adaln_input)
# TODO: Duong - check the dimension of chunking
# scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
x = x + torch.tanh(gate_msa) * self.attention_norm2(
self.attention(
modulate(self.attention_norm1(x), scale_msa), # ok
x_mask,
freqs_cis,
self.attention_y_norm(y), # ok
y_mask,
)
)
x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
)
else:
x = x + self.attention_norm2(
self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
self.attention_y_norm(y),
y_mask,
)
)
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
return x
class NextDiT(ModelMixin, ConfigMixin):
"""
Diffusion model with a Transformer backbone for joint image-video training.
"""
@register_to_config
def __init__(
self,
input_size=(1, 32, 32),
patch_size=(1, 2, 2),
in_channels=16,
hidden_size=4096,
depth=32,
num_heads=32,
num_kv_heads=None,
multiple_of=256,
ffn_dim_multiplier=None,
norm_eps=1e-5,
pred_sigma=False,
caption_channels=4096,
qk_norm=False,
norm_type="rms",
model_max_length=120,
rotary_max_length=384,
rotary_max_length_t=None
):
super().__init__()
self.input_size = input_size
self.patch_size = patch_size
self.in_channels = in_channels
self.hidden_size = hidden_size
self.depth = depth
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads or num_heads
self.multiple_of = multiple_of
self.ffn_dim_multiplier = ffn_dim_multiplier
self.norm_eps = norm_eps
self.pred_sigma = pred_sigma
self.caption_channels = caption_channels
self.qk_norm = qk_norm
self.norm_type = norm_type
self.model_max_length = model_max_length
self.rotary_max_length = rotary_max_length
self.rotary_max_length_t = rotary_max_length_t
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
self.y_embedder = nn.Sequential(
nn.LayerNorm(caption_channels, eps=1e-6),
nn.Linear(caption_channels, min(hidden_size, 1024)),
)
self.layers = nn.ModuleList([
TransformerBlock(
dim=hidden_size,
n_heads=num_heads,
n_kv_heads=self.num_kv_heads,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
norm_eps=norm_eps,
qk_norm=qk_norm,
y_dim=caption_channels,
max_position_embeddings=rotary_max_length,
)
for _ in range(depth)
])
self.final_layer = FinalLayer(
hidden_size=hidden_size,
num_patches=np.prod(patch_size),
out_channels=self.out_channels,
)
assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
self.freqs_cis = self.precompute_freqs_cis(
hidden_size // num_heads,
self.rotary_max_length,
end_t=self.rotary_max_length_t
)
def to(self, *args, **kwargs):
self = super().to(*args, **kwargs)
# self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
return self
@staticmethod
def precompute_freqs_cis(
dim: int,
end: int,
end_t: int = None,
theta: float = 10000.0,
scale_factor: float = 1.0,
scale_watershed: float = 1.0,
timestep: float = 1.0,
):
if timestep < scale_watershed:
linear_factor = scale_factor
ntk_factor = 1.0
else:
linear_factor = 1.0
ntk_factor = scale_factor
theta = theta * ntk_factor
freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
timestep = torch.arange(end, dtype=torch.float32)
freqs = torch.outer(timestep, freqs).float()
freqs_cis = torch.exp(1j * freqs)
if end_t is not None:
freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
timestep_t = torch.arange(end_t, dtype=torch.float32)
freqs_t = torch.outer(timestep_t, freqs_t).float()
freqs_cis_t = torch.exp(1j * freqs_t)
freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
else:
end_t = end
freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
return freqs_cis
def forward(
self,
samples,
timesteps,
encoder_hidden_states,
encoder_attention_mask,
scale_factor: float = 1.0, # scale_factor for rotary embedding
scale_watershed: float = 1.0, # scale_watershed for rotary embedding
):
if samples.ndim == 4: # B C H W
samples = samples[:, None, ...] # B F C H W
precomputed_freqs_cis = None
if scale_factor != 1 or scale_watershed != 1:
precomputed_freqs_cis = self.precompute_freqs_cis(
self.hidden_size // self.num_heads,
self.rotary_max_length,
end_t=self.rotary_max_length_t,
scale_factor=scale_factor,
scale_watershed=scale_watershed,
timestep=torch.max(timesteps.cpu()).item()
)
if len(timesteps.shape) == 5:
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
timesteps = t.mean(dim=-1)
elif len(timesteps.shape) == 1:
timesteps = timesteps[:, None, None, None, None].expand_as(samples)
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
timesteps = t.mean(dim=-1)
samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
samples = self.x_embedder(samples)
t = self.t_embedder(timesteps)
encoder_attention_mask_float = encoder_attention_mask[..., None].float()
encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
y = self.y_embedder(encoder_hidden_states_pool)
y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
adaln_input = t + y
for block in self.layers:
samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
samples = self.final_layer(samples, adaln_input)
samples = self.unpatchify(samples, T, H, W)
return samples
def patchify(self, x, precompute_freqs_cis=None):
# pytorch is C, H, W
B, T, C, H, W = x.size()
pT, pH, pW = self.patch_size
x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
x = x.reshape(B, -1, pT * pH * pW * C)
if precompute_freqs_cis is None:
freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
else:
freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
return x, T // pT, H // pH, W // pW, freqs_cis
def unpatchify(self, x, T, H, W):
B = x.size(0)
C = self.out_channels
pT, pH, pW = self.patch_size
x = x.view(B, T, H, W, pT, pH, pW, C)
x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
x = x.reshape(B, T * pT, C, H * pH, W * pW)
return x