Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import einops | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from typing import Any, Tuple, Optional | |
from flash_attn import flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
from .layers import LLamaFeedForward, RMSNorm | |
# import frasch | |
def modulate(x, scale): | |
return x * (1 + scale) | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.frequency_embedding_size = frequency_embedding_size | |
self.mlp = nn.Sequential( | |
nn.Linear(self.frequency_embedding_size, self.hidden_size), | |
nn.SiLU(), | |
nn.Linear(self.hidden_size, self.hidden_size), | |
) | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half | |
).to(t.device) | |
args = t[:, :, None] * freqs[None, :] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_freq = t_freq.to(self.mlp[0].weight.dtype) | |
return self.mlp(t_freq) | |
class FinalLayer(nn.Module): | |
def __init__(self, hidden_size, num_patches, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False) | |
self.linear = nn.Linear(hidden_size, num_patches * out_channels) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(min(hidden_size, 1024), hidden_size), | |
) | |
def forward(self, x, c): | |
scale = self.adaLN_modulation(c) | |
x = modulate(self.norm_final(x), scale) | |
x = self.linear(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
n_kv_heads=None, | |
qk_norm=False, | |
y_dim=0, | |
base_seqlen=None, | |
proportional_attn=False, | |
attention_dropout=0.0, | |
max_position_embeddings=384, | |
): | |
super().__init__() | |
self.dim = dim | |
self.n_heads = n_heads | |
self.n_kv_heads = n_kv_heads or n_heads | |
self.qk_norm = qk_norm | |
self.y_dim = y_dim | |
self.base_seqlen = base_seqlen | |
self.proportional_attn = proportional_attn | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.head_dim = dim // n_heads | |
self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False) | |
self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False) | |
if y_dim > 0: | |
self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False) | |
self.gate = nn.Parameter(torch.zeros(n_heads)) | |
self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False) | |
if qk_norm: | |
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim) | |
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) | |
if y_dim > 0: | |
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6) | |
else: | |
self.ky_norm = nn.Identity() | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
self.ky_norm = nn.Identity() | |
def apply_rotary_emb(xq, xk, freqs_cis): | |
# xq, xk: [batch_size, seq_len, n_heads, head_dim] | |
# freqs_cis: [1, seq_len, 1, head_dim] | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2) | |
xq_complex = torch.view_as_complex(xq_) | |
xk_complex = torch.view_as_complex(xk_) | |
freqs_cis = freqs_cis.unsqueeze(2) | |
# Apply freqs_cis | |
xq_out = xq_complex * freqs_cis | |
xk_out = xk_complex * freqs_cis | |
# Convert back to real numbers | |
xq_out = torch.view_as_real(xq_out).flatten(-2) | |
xk_out = torch.view_as_real(xk_out).flatten(-2) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
# copied from huggingface modeling_llama.py | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), | |
indices_k, | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
def forward( | |
self, | |
x, | |
x_mask, | |
freqs_cis, | |
y=None, | |
y_mask=None, | |
init_cache=False, | |
): | |
bsz, seqlen, _ = x.size() | |
xq = self.wq(x) | |
xk = self.wk(x) | |
xv = self.wv(x) | |
if x_mask is None: | |
x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device) | |
inp_dtype = xq.dtype | |
xq = self.q_norm(xq) | |
xk = self.k_norm(xk) | |
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim) | |
if self.n_kv_heads != self.n_heads: | |
n_rep = self.n_heads // self.n_kv_heads | |
xk = xk.repeat_interleave(n_rep, dim=2) | |
xv = xv.repeat_interleave(n_rep, dim=2) | |
freqs_cis = freqs_cis.to(xq.device) | |
xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis) | |
if inp_dtype in [torch.float16, torch.bfloat16]: | |
# begin var_len flash attn | |
( | |
query_states, | |
key_states, | |
value_states, | |
indices_q, | |
cu_seq_lens, | |
max_seq_lens, | |
) = self._upad_input(xq, xk, xv, x_mask, seqlen) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states.to(inp_dtype), | |
key_states.to(inp_dtype), | |
value_states.to(inp_dtype), | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=0.0, | |
causal=False, | |
softmax_scale=None, | |
softcap=30, | |
) | |
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen) | |
else: | |
output = ( | |
F.scaled_dot_product_attention( | |
xq.permute(0, 2, 1, 3), | |
xk.permute(0, 2, 1, 3), | |
xv.permute(0, 2, 1, 3), | |
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1), | |
scale=None, | |
) | |
.permute(0, 2, 1, 3) | |
.to(inp_dtype) | |
) #ok | |
if hasattr(self, "wk_y"): | |
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim) | |
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim) | |
n_rep = self.n_heads // self.n_kv_heads | |
# if n_rep >= 1: | |
# yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
# yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
if n_rep >= 1: | |
yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep) | |
yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep) | |
output_y = F.scaled_dot_product_attention( | |
xq.permute(0, 2, 1, 3), | |
yk.permute(0, 2, 1, 3), | |
yv.permute(0, 2, 1, 3), | |
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool), | |
).permute(0, 2, 1, 3) | |
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1) | |
output = output + output_y | |
output = output.flatten(-2) | |
output = self.wo(output) | |
return output.to(inp_dtype) | |
class TransformerBlock(nn.Module): | |
""" | |
Corresponds to the Transformer block in the JAX code. | |
""" | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
n_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
qk_norm, | |
y_dim, | |
max_position_embeddings, | |
): | |
super().__init__() | |
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings) | |
self.feed_forward = LLamaFeedForward( | |
dim=dim, | |
hidden_dim=4 * dim, | |
multiple_of=multiple_of, | |
ffn_dim_multiplier=ffn_dim_multiplier, | |
) | |
self.attention_norm1 = RMSNorm(dim, eps=norm_eps) | |
self.attention_norm2 = RMSNorm(dim, eps=norm_eps) | |
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) | |
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(min(dim, 1024), 4 * dim), | |
) | |
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps) | |
def forward( | |
self, | |
x, | |
x_mask, | |
freqs_cis, | |
y, | |
y_mask, | |
adaln_input=None, | |
): | |
if adaln_input is not None: | |
scales_gates = self.adaLN_modulation(adaln_input) | |
# TODO: Duong - check the dimension of chunking | |
# scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1) | |
scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1) | |
x = x + torch.tanh(gate_msa) * self.attention_norm2( | |
self.attention( | |
modulate(self.attention_norm1(x), scale_msa), # ok | |
x_mask, | |
freqs_cis, | |
self.attention_y_norm(y), # ok | |
y_mask, | |
) | |
) | |
x = x + torch.tanh(gate_mlp) * self.ffn_norm2( | |
self.feed_forward( | |
modulate(self.ffn_norm1(x), scale_mlp), | |
) | |
) | |
else: | |
x = x + self.attention_norm2( | |
self.attention( | |
self.attention_norm1(x), | |
x_mask, | |
freqs_cis, | |
self.attention_y_norm(y), | |
y_mask, | |
) | |
) | |
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x))) | |
return x | |
class NextDiT(ModelMixin, ConfigMixin): | |
""" | |
Diffusion model with a Transformer backbone for joint image-video training. | |
""" | |
def __init__( | |
self, | |
input_size=(1, 32, 32), | |
patch_size=(1, 2, 2), | |
in_channels=16, | |
hidden_size=4096, | |
depth=32, | |
num_heads=32, | |
num_kv_heads=None, | |
multiple_of=256, | |
ffn_dim_multiplier=None, | |
norm_eps=1e-5, | |
pred_sigma=False, | |
caption_channels=4096, | |
qk_norm=False, | |
norm_type="rms", | |
model_max_length=120, | |
rotary_max_length=384, | |
rotary_max_length_t=None | |
): | |
super().__init__() | |
self.input_size = input_size | |
self.patch_size = patch_size | |
self.in_channels = in_channels | |
self.hidden_size = hidden_size | |
self.depth = depth | |
self.num_heads = num_heads | |
self.num_kv_heads = num_kv_heads or num_heads | |
self.multiple_of = multiple_of | |
self.ffn_dim_multiplier = ffn_dim_multiplier | |
self.norm_eps = norm_eps | |
self.pred_sigma = pred_sigma | |
self.caption_channels = caption_channels | |
self.qk_norm = qk_norm | |
self.norm_type = norm_type | |
self.model_max_length = model_max_length | |
self.rotary_max_length = rotary_max_length | |
self.rotary_max_length_t = rotary_max_length_t | |
self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size) | |
self.t_embedder = TimestepEmbedder(min(hidden_size, 1024)) | |
self.y_embedder = nn.Sequential( | |
nn.LayerNorm(caption_channels, eps=1e-6), | |
nn.Linear(caption_channels, min(hidden_size, 1024)), | |
) | |
self.layers = nn.ModuleList([ | |
TransformerBlock( | |
dim=hidden_size, | |
n_heads=num_heads, | |
n_kv_heads=self.num_kv_heads, | |
multiple_of=multiple_of, | |
ffn_dim_multiplier=ffn_dim_multiplier, | |
norm_eps=norm_eps, | |
qk_norm=qk_norm, | |
y_dim=caption_channels, | |
max_position_embeddings=rotary_max_length, | |
) | |
for _ in range(depth) | |
]) | |
self.final_layer = FinalLayer( | |
hidden_size=hidden_size, | |
num_patches=np.prod(patch_size), | |
out_channels=self.out_channels, | |
) | |
assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6" | |
self.freqs_cis = self.precompute_freqs_cis( | |
hidden_size // num_heads, | |
self.rotary_max_length, | |
end_t=self.rotary_max_length_t | |
) | |
def to(self, *args, **kwargs): | |
self = super().to(*args, **kwargs) | |
# self.freqs_cis = self.freqs_cis.to(*args, **kwargs) | |
return self | |
def precompute_freqs_cis( | |
dim: int, | |
end: int, | |
end_t: int = None, | |
theta: float = 10000.0, | |
scale_factor: float = 1.0, | |
scale_watershed: float = 1.0, | |
timestep: float = 1.0, | |
): | |
if timestep < scale_watershed: | |
linear_factor = scale_factor | |
ntk_factor = 1.0 | |
else: | |
linear_factor = 1.0 | |
ntk_factor = scale_factor | |
theta = theta * ntk_factor | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor | |
timestep = torch.arange(end, dtype=torch.float32) | |
freqs = torch.outer(timestep, freqs).float() | |
freqs_cis = torch.exp(1j * freqs) | |
if end_t is not None: | |
freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor | |
timestep_t = torch.arange(end_t, dtype=torch.float32) | |
freqs_t = torch.outer(timestep_t, freqs_t).float() | |
freqs_cis_t = torch.exp(1j * freqs_t) | |
freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1) | |
else: | |
end_t = end | |
freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1) | |
freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1) | |
freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1) | |
freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1) | |
return freqs_cis | |
def forward( | |
self, | |
samples, | |
timesteps, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
scale_factor: float = 1.0, # scale_factor for rotary embedding | |
scale_watershed: float = 1.0, # scale_watershed for rotary embedding | |
): | |
if samples.ndim == 4: # B C H W | |
samples = samples[:, None, ...] # B F C H W | |
precomputed_freqs_cis = None | |
if scale_factor != 1 or scale_watershed != 1: | |
precomputed_freqs_cis = self.precompute_freqs_cis( | |
self.hidden_size // self.num_heads, | |
self.rotary_max_length, | |
end_t=self.rotary_max_length_t, | |
scale_factor=scale_factor, | |
scale_watershed=scale_watershed, | |
timestep=torch.max(timesteps.cpu()).item() | |
) | |
if len(timesteps.shape) == 5: | |
t, *_ = self.patchify(timesteps, precomputed_freqs_cis) | |
timesteps = t.mean(dim=-1) | |
elif len(timesteps.shape) == 1: | |
timesteps = timesteps[:, None, None, None, None].expand_as(samples) | |
t, *_ = self.patchify(timesteps, precomputed_freqs_cis) | |
timesteps = t.mean(dim=-1) | |
samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis) | |
samples = self.x_embedder(samples) | |
t = self.t_embedder(timesteps) | |
encoder_attention_mask_float = encoder_attention_mask[..., None].float() | |
encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8) | |
encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype) | |
y = self.y_embedder(encoder_hidden_states_pool) | |
y = y.unsqueeze(1).expand(-1, samples.size(1), -1) | |
adaln_input = t + y | |
for block in self.layers: | |
samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input) | |
samples = self.final_layer(samples, adaln_input) | |
samples = self.unpatchify(samples, T, H, W) | |
return samples | |
def patchify(self, x, precompute_freqs_cis=None): | |
# pytorch is C, H, W | |
B, T, C, H, W = x.size() | |
pT, pH, pW = self.patch_size | |
x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW) | |
x = x.permute(0, 1, 4, 6, 2, 5, 7, 3) | |
x = x.reshape(B, -1, pT * pH * pW * C) | |
if precompute_freqs_cis is None: | |
freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device) | |
else: | |
freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device) | |
return x, T // pT, H // pH, W // pW, freqs_cis | |
def unpatchify(self, x, T, H, W): | |
B = x.size(0) | |
C = self.out_channels | |
pT, pH, pW = self.patch_size | |
x = x.view(B, T, H, W, pT, pH, pW, C) | |
x = x.permute(0, 1, 4, 7, 2, 5, 3, 6) | |
x = x.reshape(B, T * pT, C, H * pH, W * pW) | |
return x | |