lehduong's picture
Upload folder using huggingface_hub
038856e verified
raw
history blame
4.5 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Callable, Optional
import warnings
import torch
import torch.nn as nn
try:
from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
def modulate(x, scale):
return x * (1 + scale.unsqueeze(1))
class LLamaFeedForward(nn.Module):
"""
Corresponds to the FeedForward layer in Next DiT.
"""
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float] = None,
zeros_initialize: bool = True,
dtype: torch.dtype = torch.float32,
):
super().__init__()
self.dim = dim
self.hidden_dim = hidden_dim
self.multiple_of = multiple_of
self.ffn_dim_multiplier = ffn_dim_multiplier
self.zeros_initialize = zeros_initialize
self.dtype = dtype
# Compute hidden_dim based on the given formula
hidden_dim_calculated = int(2 * self.hidden_dim / 3)
if self.ffn_dim_multiplier is not None:
hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)
# Define linear layers
self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
# Initialize weights
if self.zeros_initialize:
nn.init.zeros_(self.w2.weight)
else:
nn.init.xavier_uniform_(self.w2.weight)
nn.init.xavier_uniform_(self.w1.weight)
nn.init.xavier_uniform_(self.w3.weight)
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class FinalLayer(nn.Module):
"""
The final layer of Next-DiT.
"""
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.out_channels = out_channels
# LayerNorm without learnable parameters (elementwise_affine=False)
self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(self.hidden_size, self.hidden_size),
)
# Initialize the last layer with zeros
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(self, x, c):
scale = self.adaLN_modulation(c)
x = modulate(self.norm_final(x), scale)
x = self.linear(x)
return x