Spaces:
Runtime error
Runtime error
Upload 65 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitmodules +3 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/bin/inference.py +114 -0
- cosyvoice/bin/train.py +140 -0
- cosyvoice/cli/__init__.py +0 -0
- cosyvoice/cli/cosyvoice.py +83 -0
- cosyvoice/cli/frontend.py +168 -0
- cosyvoice/cli/model.py +95 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +160 -0
- cosyvoice/dataset/processor.py +965 -0
- cosyvoice/flow/decoder.py +222 -0
- cosyvoice/flow/flow.py +144 -0
- cosyvoice/flow/flow_gradtts.py +142 -0
- cosyvoice/flow/flow_matching.py +142 -0
- cosyvoice/flow/flow_matching_dit.py +180 -0
- cosyvoice/flow/length_regulator.py +49 -0
- cosyvoice/flow/stable/adp.py +1591 -0
- cosyvoice/flow/stable/blocks.py +339 -0
- cosyvoice/flow/stable/dit.py +415 -0
- cosyvoice/flow/stable/dit_v2.py +307 -0
- cosyvoice/flow/stable/sampling.py +232 -0
- cosyvoice/flow/stable/stable_diffusion.py +109 -0
- cosyvoice/flow/stable/stable_diffusion_test.py +104 -0
- cosyvoice/flow/stable/transformer.py +816 -0
- cosyvoice/flow/stable/transformer_use_mask.py +845 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +398 -0
- cosyvoice/llm/llm.py +206 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/activation.py +84 -0
- cosyvoice/transformer/attention.py +612 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/transformer/embedding.py +293 -0
- cosyvoice/transformer/encoder.py +567 -0
- cosyvoice/transformer/encoder_layer.py +236 -0
- cosyvoice/transformer/label_smoothing_loss.py +96 -0
- cosyvoice/transformer/positionwise_feed_forward.py +115 -0
- cosyvoice/transformer/subsampling.py +383 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/block_mask_util.py +34 -0
- cosyvoice/utils/class_utils.py +72 -0
- cosyvoice/utils/common.py +103 -0
- cosyvoice/utils/executor.py +132 -0
- cosyvoice/utils/file_utils.py +53 -0
- cosyvoice/utils/frontend_utils.py +125 -0
- cosyvoice/utils/mask.py +227 -0
- cosyvoice/utils/scheduler.py +739 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "third_party/Matcha-TTS"]
|
2 |
+
path = third_party/Matcha-TTS
|
3 |
+
url = https://github.com/shivammehta25/Matcha-TTS
|
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/bin/inference.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
import torchaudio
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
from tqdm import tqdm
|
27 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
28 |
+
|
29 |
+
from cosyvoice.dataset.dataset import Dataset
|
30 |
+
|
31 |
+
def get_args():
|
32 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
33 |
+
parser.add_argument('--config', required=True, help='config file')
|
34 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
36 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
37 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
38 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
39 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
40 |
+
parser.add_argument('--gpu',
|
41 |
+
type=int,
|
42 |
+
default=-1,
|
43 |
+
help='gpu id for this rank, -1 for cpu')
|
44 |
+
parser.add_argument('--mode',
|
45 |
+
default='sft',
|
46 |
+
choices=['sft', 'zero_shot'],
|
47 |
+
help='inference mode')
|
48 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
59 |
+
|
60 |
+
# Init cosyvoice models from configs
|
61 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
62 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
63 |
+
with open(args.config, 'r') as f:
|
64 |
+
configs = load_hyperpyyaml(f)
|
65 |
+
|
66 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
67 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
68 |
+
|
69 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
70 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
71 |
+
|
72 |
+
del configs
|
73 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
74 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
75 |
+
f = open(fn, 'w')
|
76 |
+
with torch.no_grad():
|
77 |
+
for batch_idx, batch in tqdm(enumerate(test_data_loader)):
|
78 |
+
utts = batch["utts"]
|
79 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
80 |
+
text = batch["text"]
|
81 |
+
text_token = batch["text_token"].to(device)
|
82 |
+
text_token_len = batch["text_token_len"].to(device)
|
83 |
+
tts_text = batch["tts_text"]
|
84 |
+
tts_index = batch["tts_index"]
|
85 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
86 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
87 |
+
speech_token = batch["speech_token"].to(device)
|
88 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
89 |
+
speech_feat = batch["speech_feat"].to(device)
|
90 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
91 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
92 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
93 |
+
if args.mode == 'sft':
|
94 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
95 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
96 |
+
else:
|
97 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
98 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
99 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
100 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
101 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
102 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
103 |
+
model_output = model.inference(**model_input)
|
104 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
105 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
106 |
+
torchaudio.save(tts_fn, model_output['tts_speech'], sample_rate=22050)
|
107 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
108 |
+
f.flush()
|
109 |
+
f.close()
|
110 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
# import deepspeed
|
24 |
+
import pdb
|
25 |
+
from hyperpyyaml import load_hyperpyyaml
|
26 |
+
|
27 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
28 |
+
|
29 |
+
from cosyvoice.utils.executor import Executor
|
30 |
+
from cosyvoice.utils.train_utils import (
|
31 |
+
init_distributed,
|
32 |
+
init_dataset_and_dataloader,
|
33 |
+
init_optimizer_and_scheduler,
|
34 |
+
init_summarywriter, save_model,
|
35 |
+
wrap_cuda_model, check_modify_and_save_config)
|
36 |
+
|
37 |
+
|
38 |
+
def get_args():
|
39 |
+
parser = argparse.ArgumentParser(description='training your network')
|
40 |
+
parser.add_argument('--train_engine',
|
41 |
+
default='torch_ddp',
|
42 |
+
choices=['torch_ddp', 'deepspeed'],
|
43 |
+
help='Engine for paralleled training')
|
44 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
45 |
+
parser.add_argument('--config', required=True, help='config file')
|
46 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
47 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
48 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
49 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
50 |
+
parser.add_argument('--tensorboard_dir',
|
51 |
+
default='tensorboard',
|
52 |
+
help='tensorboard log dir')
|
53 |
+
parser.add_argument('--ddp.dist_backend',
|
54 |
+
dest='dist_backend',
|
55 |
+
default='nccl',
|
56 |
+
choices=['nccl', 'gloo'],
|
57 |
+
help='distributed backend')
|
58 |
+
parser.add_argument('--num_workers',
|
59 |
+
default=0,
|
60 |
+
type=int,
|
61 |
+
help='num of subprocess workers for reading')
|
62 |
+
parser.add_argument('--prefetch',
|
63 |
+
default=100,
|
64 |
+
type=int,
|
65 |
+
help='prefetch number')
|
66 |
+
parser.add_argument('--pin_memory',
|
67 |
+
action='store_true',
|
68 |
+
default=False,
|
69 |
+
help='Use pinned memory buffers used for reading')
|
70 |
+
parser.add_argument('--deepspeed.save_states',
|
71 |
+
dest='save_states',
|
72 |
+
default='model_only',
|
73 |
+
choices=['model_only', 'model+optimizer'],
|
74 |
+
help='save model/optimizer states')
|
75 |
+
parser.add_argument('--timeout',
|
76 |
+
default=30,
|
77 |
+
type=int,
|
78 |
+
help='timeout (in seconds) of cosyvoice_join.')
|
79 |
+
# parser = deepspeed.add_config_arguments(parser)
|
80 |
+
args = parser.parse_args()
|
81 |
+
return args
|
82 |
+
|
83 |
+
|
84 |
+
@record
|
85 |
+
def main():
|
86 |
+
args = get_args()
|
87 |
+
logging.basicConfig(level=logging.DEBUG,
|
88 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
89 |
+
|
90 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
91 |
+
with open(args.config, 'r') as f:
|
92 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
93 |
+
configs['train_conf'].update(vars(args))
|
94 |
+
|
95 |
+
# Init env for ddp
|
96 |
+
init_distributed(args)
|
97 |
+
|
98 |
+
# Get dataset & dataloader
|
99 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
100 |
+
init_dataset_and_dataloader(args, configs)
|
101 |
+
|
102 |
+
# Do some sanity checks and save config to arsg.model_dir
|
103 |
+
configs = check_modify_and_save_config(args, configs)
|
104 |
+
|
105 |
+
# Tensorboard summary
|
106 |
+
writer = init_summarywriter(args)
|
107 |
+
|
108 |
+
# load checkpoint
|
109 |
+
model = configs[args.model]
|
110 |
+
if args.checkpoint is not None:
|
111 |
+
model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
|
112 |
+
|
113 |
+
# Dispatch model from cpu to gpu
|
114 |
+
model = wrap_cuda_model(args, model)
|
115 |
+
|
116 |
+
# Get optimizer & scheduler
|
117 |
+
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
118 |
+
# pdb.set_trace()
|
119 |
+
# Save init checkpoints
|
120 |
+
info_dict = deepcopy(configs['train_conf'])
|
121 |
+
save_model(model, 'init', info_dict)
|
122 |
+
|
123 |
+
# Get executor
|
124 |
+
executor = Executor()
|
125 |
+
|
126 |
+
# Start training loop
|
127 |
+
for epoch in range(info_dict['max_epoch']):
|
128 |
+
executor.epoch = epoch
|
129 |
+
train_dataset.set_epoch(epoch)
|
130 |
+
dist.barrier()
|
131 |
+
# try:
|
132 |
+
# dist.barrier()
|
133 |
+
# except RuntimeError as e:
|
134 |
+
# logging.info('except RuntimeError as e: {}'.format(e))
|
135 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
136 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
|
137 |
+
dist.destroy_process_group(group_join)
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
main()
|
cosyvoice/cli/__init__.py
ADDED
File without changes
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from hyperpyyaml import load_hyperpyyaml
|
17 |
+
from modelscope import snapshot_download
|
18 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
19 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
20 |
+
|
21 |
+
class CosyVoice:
|
22 |
+
|
23 |
+
def __init__(self, model_dir):
|
24 |
+
instruct = True if '-Instruct' in model_dir else False
|
25 |
+
self.model_dir = model_dir
|
26 |
+
if not os.path.exists(model_dir):
|
27 |
+
model_dir = snapshot_download(model_dir)
|
28 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
29 |
+
configs = load_hyperpyyaml(f)
|
30 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
31 |
+
configs['feat_extractor'],
|
32 |
+
'{}/campplus.onnx'.format(model_dir),
|
33 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
34 |
+
'{}/spk2info.pt'.format(model_dir),
|
35 |
+
instruct,
|
36 |
+
configs['allowed_special'])
|
37 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
38 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
39 |
+
'{}/flow.pt'.format(model_dir),
|
40 |
+
'{}/hift.pt'.format(model_dir))
|
41 |
+
del configs
|
42 |
+
|
43 |
+
def list_avaliable_spks(self):
|
44 |
+
spks = list(self.frontend.spk2info.keys())
|
45 |
+
return spks
|
46 |
+
|
47 |
+
def inference_sft(self, tts_text, spk_id):
|
48 |
+
tts_speeches = []
|
49 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
50 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
51 |
+
model_output = self.model.inference(**model_input)
|
52 |
+
tts_speeches.append(model_output['tts_speech'])
|
53 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
54 |
+
|
55 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
56 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
57 |
+
tts_speeches = []
|
58 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
59 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
60 |
+
model_output = self.model.inference(**model_input)
|
61 |
+
tts_speeches.append(model_output['tts_speech'])
|
62 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
63 |
+
|
64 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k):
|
65 |
+
if self.frontend.instruct is True:
|
66 |
+
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
67 |
+
tts_speeches = []
|
68 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
69 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
70 |
+
model_output = self.model.inference(**model_input)
|
71 |
+
tts_speeches.append(model_output['tts_speech'])
|
72 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
73 |
+
|
74 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text):
|
75 |
+
if self.frontend.instruct is False:
|
76 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
77 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
78 |
+
tts_speeches = []
|
79 |
+
for i in self.frontend.text_normalize(tts_text, split=True):
|
80 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
81 |
+
model_output = self.model.inference(**model_input)
|
82 |
+
tts_speeches.append(model_output['tts_speech'])
|
83 |
+
return {'tts_speech': torch.concat(tts_speeches, dim=1)}
|
cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
import onnxruntime
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import whisper
|
19 |
+
from typing import Callable
|
20 |
+
import torchaudio.compliance.kaldi as kaldi
|
21 |
+
import torchaudio
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import inflect
|
25 |
+
try:
|
26 |
+
import ttsfrd
|
27 |
+
use_ttsfrd = True
|
28 |
+
except ImportError:
|
29 |
+
print("failed to import ttsfrd, use WeTextProcessing instead")
|
30 |
+
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
31 |
+
from tn.english.normalizer import Normalizer as EnNormalizer
|
32 |
+
use_ttsfrd = False
|
33 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph
|
34 |
+
|
35 |
+
|
36 |
+
class CosyVoiceFrontEnd:
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
get_tokenizer: Callable,
|
40 |
+
feat_extractor: Callable,
|
41 |
+
campplus_model: str,
|
42 |
+
speech_tokenizer_model: str,
|
43 |
+
spk2info: str = '',
|
44 |
+
instruct: bool = False,
|
45 |
+
allowed_special: str = 'all'):
|
46 |
+
self.tokenizer = get_tokenizer()
|
47 |
+
self.feat_extractor = feat_extractor
|
48 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
+
option = onnxruntime.SessionOptions()
|
50 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
51 |
+
option.intra_op_num_threads = 1
|
52 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
53 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if torch.cuda.is_available() else "CPUExecutionProvider"])
|
54 |
+
if os.path.exists(spk2info):
|
55 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
56 |
+
self.instruct = instruct
|
57 |
+
self.allowed_special = allowed_special
|
58 |
+
self.inflect_parser = inflect.engine()
|
59 |
+
self.use_ttsfrd = use_ttsfrd
|
60 |
+
if self.use_ttsfrd:
|
61 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
62 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
63 |
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource'
|
64 |
+
self.frd.set_lang_type('pinyin')
|
65 |
+
self.frd.enable_pinyin_mix(True)
|
66 |
+
self.frd.set_breakmodel_index(1)
|
67 |
+
else:
|
68 |
+
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
69 |
+
self.en_tn_model = EnNormalizer()
|
70 |
+
|
71 |
+
def _extract_text_token(self, text):
|
72 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
73 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
74 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
75 |
+
return text_token, text_token_len
|
76 |
+
|
77 |
+
def _extract_speech_token(self, speech):
|
78 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
79 |
+
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
80 |
+
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
81 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
82 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
83 |
+
return speech_token, speech_token_len
|
84 |
+
|
85 |
+
def _extract_spk_embedding(self, speech):
|
86 |
+
feat = kaldi.fbank(speech,
|
87 |
+
num_mel_bins=80,
|
88 |
+
dither=0,
|
89 |
+
sample_frequency=16000)
|
90 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
91 |
+
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
92 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
93 |
+
return embedding
|
94 |
+
|
95 |
+
def _extract_speech_feat(self, speech):
|
96 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
97 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
98 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
99 |
+
return speech_feat, speech_feat_len
|
100 |
+
|
101 |
+
def text_normalize(self, text, split=True):
|
102 |
+
text = text.strip()
|
103 |
+
if contains_chinese(text):
|
104 |
+
if self.use_ttsfrd:
|
105 |
+
text = self.frd.get_frd_extra_info(text, 'input')
|
106 |
+
else:
|
107 |
+
text = self.zh_tn_model.normalize(text)
|
108 |
+
text = text.replace("\n", "")
|
109 |
+
text = replace_blank(text)
|
110 |
+
text = replace_corner_mark(text)
|
111 |
+
text = text.replace(".", "、")
|
112 |
+
text = text.replace(" - ", ",")
|
113 |
+
text = remove_bracket(text)
|
114 |
+
text = re.sub(r'[,,]+$', '。', text)
|
115 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
116 |
+
token_min_n=60, merge_len=20,
|
117 |
+
comma_split=False)]
|
118 |
+
else:
|
119 |
+
if self.use_ttsfrd:
|
120 |
+
text = self.frd.get_frd_extra_info(text, 'input')
|
121 |
+
else:
|
122 |
+
text = self.en_tn_model.normalize(text)
|
123 |
+
text = spell_out_number(text, self.inflect_parser)
|
124 |
+
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
125 |
+
token_min_n=60, merge_len=20,
|
126 |
+
comma_split=False)]
|
127 |
+
if split is False:
|
128 |
+
return text
|
129 |
+
return texts
|
130 |
+
|
131 |
+
def frontend_sft(self, tts_text, spk_id):
|
132 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
133 |
+
embedding = self.spk2info[spk_id]['embedding']
|
134 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
135 |
+
return model_input
|
136 |
+
|
137 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
138 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
139 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
140 |
+
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
|
141 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
|
142 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
143 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
144 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
145 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
146 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
147 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
148 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
149 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
150 |
+
return model_input
|
151 |
+
|
152 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
153 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
154 |
+
# in cross lingual mode, we remove prompt in llm
|
155 |
+
del model_input['prompt_text']
|
156 |
+
del model_input['prompt_text_len']
|
157 |
+
del model_input['llm_prompt_speech_token']
|
158 |
+
del model_input['llm_prompt_speech_token_len']
|
159 |
+
return model_input
|
160 |
+
|
161 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
162 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
163 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
164 |
+
del model_input['llm_embedding']
|
165 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
166 |
+
model_input['prompt_text'] = instruct_text_token
|
167 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
168 |
+
return model_input
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
class CosyVoiceModel:
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
llm: torch.nn.Module,
|
20 |
+
flow: torch.nn.Module,
|
21 |
+
hift: torch.nn.Module):
|
22 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
23 |
+
self.llm = llm
|
24 |
+
self.flow = flow
|
25 |
+
self.hift = hift
|
26 |
+
|
27 |
+
def load(self, llm_model, flow_model, hift_model):
|
28 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
29 |
+
self.llm.to(self.device).eval()
|
30 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
31 |
+
self.flow.to(self.device).eval()
|
32 |
+
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
33 |
+
self.hift.to(self.device).eval()
|
34 |
+
|
35 |
+
def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
36 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
37 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
38 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
39 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
40 |
+
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
41 |
+
text_len=text_len.to(self.device),
|
42 |
+
prompt_text=prompt_text.to(self.device),
|
43 |
+
prompt_text_len=prompt_text_len.to(self.device),
|
44 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
45 |
+
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
46 |
+
embedding=llm_embedding.to(self.device),
|
47 |
+
beam_size=1,
|
48 |
+
sampling=25,
|
49 |
+
max_token_text_ratio=30,
|
50 |
+
min_token_text_ratio=3)
|
51 |
+
tts_mel = self.flow.inference(token=tts_speech_token,
|
52 |
+
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
53 |
+
prompt_token=flow_prompt_speech_token.to(self.device),
|
54 |
+
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
55 |
+
prompt_feat=prompt_speech_feat.to(self.device),
|
56 |
+
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
57 |
+
embedding=flow_embedding.to(self.device))
|
58 |
+
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
return {'tts_speech': tts_speech}
|
61 |
+
|
62 |
+
def text_to_token(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
63 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
64 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
65 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
66 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
67 |
+
tts_speech_token = self.llm.inference(text=text.to(self.device),
|
68 |
+
text_len=text_len.to(self.device),
|
69 |
+
prompt_text=prompt_text.to(self.device),
|
70 |
+
prompt_text_len=prompt_text_len.to(self.device),
|
71 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
72 |
+
prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
73 |
+
embedding=llm_embedding.to(self.device),
|
74 |
+
beam_size=1,
|
75 |
+
sampling=25,
|
76 |
+
max_token_text_ratio=30,
|
77 |
+
min_token_text_ratio=3)
|
78 |
+
return tts_speech_token
|
79 |
+
|
80 |
+
def token_to_speech(self, tts_speech_token, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
81 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
82 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
83 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
84 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
85 |
+
|
86 |
+
tts_mel = self.flow.inference(token=tts_speech_token,
|
87 |
+
token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
88 |
+
prompt_token=flow_prompt_speech_token.to(self.device),
|
89 |
+
prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
90 |
+
prompt_feat=prompt_speech_feat.to(self.device),
|
91 |
+
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
92 |
+
embedding=flow_embedding.to(self.device))
|
93 |
+
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
return {'tts_speech': tts_speech}
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import IterableDataset
|
24 |
+
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
25 |
+
|
26 |
+
|
27 |
+
class Processor(IterableDataset):
|
28 |
+
|
29 |
+
def __init__(self, source, f, *args, **kw):
|
30 |
+
assert callable(f)
|
31 |
+
self.source = source
|
32 |
+
self.f = f
|
33 |
+
self.args = args
|
34 |
+
self.kw = kw
|
35 |
+
|
36 |
+
def set_epoch(self, epoch):
|
37 |
+
self.source.set_epoch(epoch)
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
""" Return an iterator over the source dataset processed by the
|
41 |
+
given processor.
|
42 |
+
"""
|
43 |
+
assert self.source is not None
|
44 |
+
assert callable(self.f)
|
45 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
46 |
+
|
47 |
+
def apply(self, f):
|
48 |
+
assert callable(f)
|
49 |
+
return Processor(self, f, *self.args, **self.kw)
|
50 |
+
|
51 |
+
|
52 |
+
class DistributedSampler:
|
53 |
+
|
54 |
+
def __init__(self, shuffle=True, partition=True):
|
55 |
+
self.epoch = -1
|
56 |
+
self.update()
|
57 |
+
self.shuffle = shuffle
|
58 |
+
self.partition = partition
|
59 |
+
|
60 |
+
def update(self):
|
61 |
+
assert dist.is_available()
|
62 |
+
if dist.is_initialized():
|
63 |
+
self.rank = dist.get_rank()
|
64 |
+
self.world_size = dist.get_world_size()
|
65 |
+
else:
|
66 |
+
self.rank = 0
|
67 |
+
self.world_size = 1
|
68 |
+
worker_info = torch.utils.data.get_worker_info()
|
69 |
+
if worker_info is None:
|
70 |
+
self.worker_id = 0
|
71 |
+
self.num_workers = 1
|
72 |
+
else:
|
73 |
+
self.worker_id = worker_info.id
|
74 |
+
self.num_workers = worker_info.num_workers
|
75 |
+
return dict(rank=self.rank,
|
76 |
+
world_size=self.world_size,
|
77 |
+
worker_id=self.worker_id,
|
78 |
+
num_workers=self.num_workers)
|
79 |
+
|
80 |
+
def set_epoch(self, epoch):
|
81 |
+
self.epoch = epoch
|
82 |
+
|
83 |
+
def sample(self, data):
|
84 |
+
""" Sample data according to rank/world_size/num_workers
|
85 |
+
|
86 |
+
Args:
|
87 |
+
data(List): input data list
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
List: data list after sample
|
91 |
+
"""
|
92 |
+
data = list(range(len(data)))
|
93 |
+
# force datalist even
|
94 |
+
if self.partition:
|
95 |
+
if self.shuffle:
|
96 |
+
random.Random(self.epoch).shuffle(data)
|
97 |
+
if len(data) < self.world_size:
|
98 |
+
data = data * math.ceil(self.world_size / len(data))
|
99 |
+
data = data[:self.world_size]
|
100 |
+
data = data[self.rank::self.world_size]
|
101 |
+
if len(data) < self.num_workers:
|
102 |
+
data = data * math.ceil(self.num_workers / len(data))
|
103 |
+
data = data[:self.num_workers]
|
104 |
+
data = data[self.worker_id::self.num_workers]
|
105 |
+
return data
|
106 |
+
|
107 |
+
|
108 |
+
class DataList(IterableDataset):
|
109 |
+
|
110 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
111 |
+
self.lists = lists
|
112 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
113 |
+
|
114 |
+
def set_epoch(self, epoch):
|
115 |
+
self.sampler.set_epoch(epoch)
|
116 |
+
|
117 |
+
def __iter__(self):
|
118 |
+
sampler_info = self.sampler.update()
|
119 |
+
indexes = self.sampler.sample(self.lists)
|
120 |
+
for index in indexes:
|
121 |
+
data = dict(src=self.lists[index])
|
122 |
+
data.update(sampler_info)
|
123 |
+
yield data
|
124 |
+
|
125 |
+
|
126 |
+
def Dataset(data_list_file,
|
127 |
+
data_pipeline,
|
128 |
+
mode='train',
|
129 |
+
shuffle=True,
|
130 |
+
partition=True,
|
131 |
+
tts_file='',
|
132 |
+
prompt_utt2data=''):
|
133 |
+
""" Construct dataset from arguments
|
134 |
+
|
135 |
+
We have two shuffle stage in the Dataset. The first is global
|
136 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
137 |
+
at training samples level.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
data_type(str): raw/shard
|
141 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
142 |
+
partition(bool): whether to do data partition in terms of rank
|
143 |
+
"""
|
144 |
+
assert mode in ['train', 'inference']
|
145 |
+
lists = read_lists(data_list_file)
|
146 |
+
# import pdb
|
147 |
+
# pdb.set_trace()
|
148 |
+
if mode == 'inference':
|
149 |
+
with open(tts_file) as f:
|
150 |
+
tts_data = json.load(f)
|
151 |
+
utt2lists = read_json_lists(prompt_utt2data)
|
152 |
+
# filter unnecessary file in inference mode
|
153 |
+
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
|
154 |
+
dataset = DataList(lists,shuffle=shuffle,partition=partition)
|
155 |
+
if mode == 'inference':
|
156 |
+
# map partial arg tts_data in inference mode
|
157 |
+
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
158 |
+
for func in data_pipeline:
|
159 |
+
dataset = Processor(dataset, func, mode=mode)
|
160 |
+
return dataset
|
cosyvoice/dataset/processor.py
ADDED
@@ -0,0 +1,965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
import json
|
17 |
+
import tarfile
|
18 |
+
import json
|
19 |
+
import io
|
20 |
+
import pyarrow.parquet as pq
|
21 |
+
from io import BytesIO
|
22 |
+
import torch
|
23 |
+
import torchaudio
|
24 |
+
from torch.nn.utils.rnn import pad_sequence
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import tarfile
|
27 |
+
import json
|
28 |
+
import io
|
29 |
+
import wave
|
30 |
+
import numpy as np
|
31 |
+
import torchaudio
|
32 |
+
import os
|
33 |
+
import sys
|
34 |
+
import json
|
35 |
+
import random
|
36 |
+
import pickle
|
37 |
+
import argparse
|
38 |
+
import itertools
|
39 |
+
import mmap
|
40 |
+
import struct
|
41 |
+
import collections
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
import shutil
|
46 |
+
import multiprocessing as mp
|
47 |
+
from pathlib import Path
|
48 |
+
|
49 |
+
from tqdm import tqdm
|
50 |
+
from collections import defaultdict
|
51 |
+
from copy import deepcopy
|
52 |
+
from datetime import datetime
|
53 |
+
import pickle
|
54 |
+
|
55 |
+
from wids import wids
|
56 |
+
import math
|
57 |
+
|
58 |
+
torchaudio.set_audio_backend('soundfile')
|
59 |
+
|
60 |
+
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
|
61 |
+
|
62 |
+
try:
|
63 |
+
MAIN_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/mean_embedding.pt")
|
64 |
+
GPT_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/spk_mean_embeddings.pt")
|
65 |
+
except:
|
66 |
+
MAIN_SPK_EMBEDDING=torch.zeros(1,192)
|
67 |
+
GPT_SPK_EMBEDDING=torch.zeros(1,192)
|
68 |
+
|
69 |
+
def parquet_opener(data, mode='train', tts_data={}):
|
70 |
+
""" Give url or local file, return file descriptor
|
71 |
+
Inplace operation.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
data(Iterable[str]): url or local file list
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
Iterable[{src, stream}]
|
78 |
+
"""
|
79 |
+
for sample in data:
|
80 |
+
assert 'src' in sample
|
81 |
+
url = sample['src']
|
82 |
+
try:
|
83 |
+
df = pq.read_table(url).to_pandas()
|
84 |
+
for i in range(len(df)):
|
85 |
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
86 |
+
continue
|
87 |
+
sample.update(dict(df.loc[i]))
|
88 |
+
if mode == 'train':
|
89 |
+
# NOTE do not return sample directly, must initialize a new dict
|
90 |
+
yield {**sample}
|
91 |
+
else:
|
92 |
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
93 |
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
94 |
+
except Exception as ex:
|
95 |
+
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def parse_tar_header(header_bytes):
|
101 |
+
header = struct.unpack("!100s8s8s8s12s12s8s1s100s6s2s32s32s8s8s155s", header_bytes)
|
102 |
+
return TarHeader(*header)
|
103 |
+
|
104 |
+
TarHeader = collections.namedtuple(
|
105 |
+
"TarHeader",
|
106 |
+
[
|
107 |
+
"name",
|
108 |
+
"mode",
|
109 |
+
"uid",
|
110 |
+
"gid",
|
111 |
+
"size",
|
112 |
+
"mtime",
|
113 |
+
"chksum",
|
114 |
+
"typeflag",
|
115 |
+
"linkname",
|
116 |
+
"magic",
|
117 |
+
"version",
|
118 |
+
"uname",
|
119 |
+
"gname",
|
120 |
+
"devmajor",
|
121 |
+
"devminor",
|
122 |
+
"prefix",
|
123 |
+
],
|
124 |
+
)
|
125 |
+
|
126 |
+
class MMTar:
|
127 |
+
def __init__(self, file_path: Path | str):
|
128 |
+
self.stream = open(file_path, "rb")
|
129 |
+
self.mmap = mmap.mmap(self.stream.fileno(), 0, access=mmap.ACCESS_READ)
|
130 |
+
|
131 |
+
def __del__(self):
|
132 |
+
try:
|
133 |
+
self.mmap.close()
|
134 |
+
self.stream.close()
|
135 |
+
except: # noqa
|
136 |
+
pass
|
137 |
+
|
138 |
+
def get_at_offset(self, offset) -> tuple[str, bytes]:
|
139 |
+
header = parse_tar_header(self.mmap[offset : offset + 500])
|
140 |
+
name = header.name.decode("utf-8").strip("\x00")
|
141 |
+
start = offset + 512
|
142 |
+
end = start + int(header.size.decode("utf-8")[:-1], 8)
|
143 |
+
return name, self.mmap[start:end]
|
144 |
+
|
145 |
+
|
146 |
+
class Tar:
|
147 |
+
def __init__(self, path: Path):
|
148 |
+
self.tar = MMTar(path)
|
149 |
+
indices_path = path.with_suffix(".index")
|
150 |
+
self.index = pickle.loads(indices_path.read_bytes())
|
151 |
+
self.name_mapping = {}
|
152 |
+
for name, offset, _ in self.index:
|
153 |
+
self.name_mapping[name] = offset
|
154 |
+
|
155 |
+
def read(self, name: str) -> bytes:
|
156 |
+
return self.tar.get_at_offset(self.name_mapping[name])[1]
|
157 |
+
|
158 |
+
def cosy_jsonl_opener(data, mode='train', tts_data={}):
|
159 |
+
""" Give url or local file, return file descriptor
|
160 |
+
Inplace operation.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
data(Iterable[str]): url or local file list
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
Iterable[{src, stream}]
|
167 |
+
"""
|
168 |
+
for sample in data:
|
169 |
+
assert 'src' in sample
|
170 |
+
cosy_jsonl_path = sample['src']
|
171 |
+
tar_file_path=cosy_jsonl_path.replace(".vq0907.jsonl",".tar")
|
172 |
+
try:
|
173 |
+
tar_data=Tar(Path(tar_file_path))
|
174 |
+
with open(cosy_jsonl_path, 'r') as f:
|
175 |
+
for line in f:
|
176 |
+
item=json.loads(line)
|
177 |
+
cosy_token = item['cosy_token']
|
178 |
+
sample['speech_token']=torch.tensor(cosy_token)
|
179 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
|
180 |
+
# print(item['filename'])
|
181 |
+
yield {**sample}
|
182 |
+
|
183 |
+
except Exception as ex:
|
184 |
+
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
185 |
+
|
186 |
+
|
187 |
+
def cosy_jsonl_opener_vq0918_nopool(data, mode='train', tts_data={}):
|
188 |
+
""" Give url or local file, return file descriptor
|
189 |
+
Inplace operation.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
data(Iterable[str]): url or local file list
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
Iterable[{src, stream}]
|
196 |
+
"""
|
197 |
+
for sample in data:
|
198 |
+
assert 'src' in sample
|
199 |
+
cosy_jsonl_path = sample['src']
|
200 |
+
tar_file_path=cosy_jsonl_path.replace(".vq0918-nopool.jsonl",".tar")
|
201 |
+
|
202 |
+
|
203 |
+
try:
|
204 |
+
tar_data=Tar(Path(tar_file_path))
|
205 |
+
with open(cosy_jsonl_path, 'r') as f:
|
206 |
+
# cosy_data = [json.loads(line) for line in f]
|
207 |
+
for line in f:
|
208 |
+
item=json.loads(line)
|
209 |
+
cosy_token = item['cosy_token']
|
210 |
+
sample['speech_token']=torch.tensor(cosy_token)
|
211 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
|
212 |
+
# print(item['filename'])
|
213 |
+
yield {**sample}
|
214 |
+
|
215 |
+
except Exception as ex:
|
216 |
+
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def cosy_jsonl_opener_vq0918_pool2(data, mode='train', tts_data={}):
|
221 |
+
""" Give url or local file, return file descriptor
|
222 |
+
Inplace operation.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
data(Iterable[str]): url or local file list
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
Iterable[{src, stream}]
|
229 |
+
"""
|
230 |
+
for sample in data:
|
231 |
+
assert 'src' in sample
|
232 |
+
cosy_jsonl_path = sample['src']
|
233 |
+
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool2.jsonl",".tar")
|
234 |
+
|
235 |
+
try:
|
236 |
+
tar_data=Tar(Path(tar_file_path))
|
237 |
+
with open(cosy_jsonl_path, 'r') as f:
|
238 |
+
for line in f:
|
239 |
+
item=json.loads(line)
|
240 |
+
cosy_token = item['cosy_token']
|
241 |
+
sample['speech_token']=torch.tensor(cosy_token)
|
242 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
|
243 |
+
|
244 |
+
yield {**sample}
|
245 |
+
|
246 |
+
except Exception as ex:
|
247 |
+
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
248 |
+
|
249 |
+
|
250 |
+
def cosy_jsonl_opener_vq0918_pool4(data, mode='train', tts_data={}):
|
251 |
+
""" Give url or local file, return file descriptor
|
252 |
+
Inplace operation.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
data(Iterable[str]): url or local file list
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
Iterable[{src, stream}]
|
259 |
+
"""
|
260 |
+
for sample in data:
|
261 |
+
assert 'src' in sample
|
262 |
+
cosy_jsonl_path = sample['src']
|
263 |
+
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool4.jsonl",".tar")
|
264 |
+
try:
|
265 |
+
tar_data=Tar(Path(tar_file_path))
|
266 |
+
with open(cosy_jsonl_path, 'r') as f:
|
267 |
+
# cosy_data = [json.loads(line) for line in f]
|
268 |
+
for line in f:
|
269 |
+
item=json.loads(line)
|
270 |
+
cosy_token = item['cosy_token']
|
271 |
+
sample['speech_token']=torch.tensor(cosy_token)
|
272 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
|
273 |
+
# print(item['filename'])
|
274 |
+
yield {**sample}
|
275 |
+
|
276 |
+
except Exception as ex:
|
277 |
+
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
278 |
+
|
279 |
+
|
280 |
+
def cosy_jsonl_opener_vq0918_pool8(data, mode='train', tts_data={}):
|
281 |
+
""" Give url or local file, return file descriptor
|
282 |
+
Inplace operation.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
data(Iterable[str]): url or local file list
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
Iterable[{src, stream}]
|
289 |
+
"""
|
290 |
+
for sample in data:
|
291 |
+
assert 'src' in sample
|
292 |
+
cosy_jsonl_path = sample['src']
|
293 |
+
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool8.jsonl",".tar")
|
294 |
+
|
295 |
+
try:
|
296 |
+
tar_data=Tar(Path(tar_file_path))
|
297 |
+
with open(cosy_jsonl_path, 'r') as f:
|
298 |
+
# cosy_data = [json.loads(line) for line in f]
|
299 |
+
for line in f:
|
300 |
+
item=json.loads(line)
|
301 |
+
cosy_token = item['cosy_token']
|
302 |
+
sample['speech_token']=torch.tensor(cosy_token)
|
303 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
|
304 |
+
# print(item['filename'])
|
305 |
+
yield {**sample}
|
306 |
+
|
307 |
+
except Exception as ex:
|
308 |
+
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
def process_sft_vq0918_pool4(data, mode='train', tts_data={}):
|
313 |
+
for sample in data:
|
314 |
+
assert 'src' in sample
|
315 |
+
|
316 |
+
token_npy_path = sample['src']
|
317 |
+
wav_path=token_npy_path.replace(".vq0918-pool4.npy","")
|
318 |
+
|
319 |
+
# wav_path,token_npy_path=sample['src'].split(' ')
|
320 |
+
try:
|
321 |
+
sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
322 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
323 |
+
if sample['speech'].shape[0] > 1:
|
324 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
325 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
326 |
+
yield {**sample}
|
327 |
+
except Exception as ex:
|
328 |
+
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
329 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
330 |
+
|
331 |
+
|
332 |
+
def process_sft_vq0918_pool4_split(data, mode='train',split_token=25, tts_data={}):
|
333 |
+
for sample in data:
|
334 |
+
assert 'src' in sample
|
335 |
+
|
336 |
+
token_npy_path = sample['src']
|
337 |
+
wav_path=token_npy_path.replace(".vq0918-pool4.npy","")
|
338 |
+
|
339 |
+
# wav_path,token_npy_path=sample['src'].split(' ')
|
340 |
+
try:
|
341 |
+
# sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
342 |
+
# sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
343 |
+
# if sample['speech'].shape[0] > 1:
|
344 |
+
# sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
345 |
+
|
346 |
+
|
347 |
+
# sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
348 |
+
|
349 |
+
|
350 |
+
speech_token=torch.tensor(np.load(token_npy_path))
|
351 |
+
speech,sample_rate= torchaudio.load(wav_path)
|
352 |
+
# split_speech=int(split_token / 12.5 * sample_rate)
|
353 |
+
if speech.shape[0] > 1:
|
354 |
+
speech = speech.mean(dim=0, keepdim=True)
|
355 |
+
|
356 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
357 |
+
sample['sample_rate']=sample_rate
|
358 |
+
|
359 |
+
num_splits = (speech_token.size(0) + split_token - 1) // split_token
|
360 |
+
|
361 |
+
for split_id in range(num_splits):
|
362 |
+
end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
|
363 |
+
end_speech_idx=int(np.ceil(end_token_idx / 12.5 * sample_rate))
|
364 |
+
sample['speech_token']=speech_token[:end_token_idx]
|
365 |
+
sample['speech']=speech[:,:end_speech_idx]
|
366 |
+
print(sample['speech_token'].size(),sample['speech'].size())
|
367 |
+
yield {**sample}
|
368 |
+
except Exception as ex:
|
369 |
+
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
370 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
371 |
+
|
372 |
+
|
373 |
+
def process_sft_vq0918_pool2(data, mode='train', tts_data={}):
|
374 |
+
for sample in data:
|
375 |
+
assert 'src' in sample
|
376 |
+
|
377 |
+
token_npy_path = sample['src'].replace(".vq0918-pool4.npy",".vq0918-pool2.npy")
|
378 |
+
wav_path=token_npy_path.replace(".vq0918-pool2.npy","")
|
379 |
+
|
380 |
+
# wav_path,token_npy_path=sample['src'].split(' ')
|
381 |
+
try:
|
382 |
+
sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
383 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
384 |
+
if sample['speech'].shape[0] > 1:
|
385 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
386 |
+
|
387 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
388 |
+
yield {**sample}
|
389 |
+
except Exception as ex:
|
390 |
+
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
391 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
392 |
+
|
393 |
+
|
394 |
+
def process_sft_vq0918_pool2_split(data, mode='train',split_token=50, tts_data={}):
|
395 |
+
for sample in data:
|
396 |
+
assert 'src' in sample
|
397 |
+
|
398 |
+
token_npy_path = sample['src']
|
399 |
+
wav_path=token_npy_path.replace(".vq0918-pool2.npy","")
|
400 |
+
|
401 |
+
# wav_path,token_npy_path=sample['src'].split(' ')
|
402 |
+
try:
|
403 |
+
# sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
404 |
+
# sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
405 |
+
# if sample['speech'].shape[0] > 1:
|
406 |
+
# sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
407 |
+
|
408 |
+
|
409 |
+
# sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
410 |
+
|
411 |
+
|
412 |
+
speech_token=torch.tensor(np.load(token_npy_path))
|
413 |
+
speech,sample_rate= torchaudio.load(wav_path)
|
414 |
+
# split_speech=int(split_token / 12.5 * sample_rate)
|
415 |
+
if speech.shape[0] > 1:
|
416 |
+
speech = speech.mean(dim=0, keepdim=True)
|
417 |
+
|
418 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
419 |
+
sample['sample_rate']=sample_rate
|
420 |
+
|
421 |
+
num_splits = (speech_token.size(0) + split_token - 1) // split_token
|
422 |
+
|
423 |
+
for split_id in range(num_splits):
|
424 |
+
end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
|
425 |
+
end_speech_idx=int(np.ceil(end_token_idx / 25 * sample_rate))
|
426 |
+
sample['speech_token']=speech_token[:end_token_idx]
|
427 |
+
sample['speech']=speech[:,:end_speech_idx]
|
428 |
+
print(sample['speech_token'].size(),sample['speech'].size())
|
429 |
+
yield {**sample}
|
430 |
+
except Exception as ex:
|
431 |
+
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
432 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
433 |
+
|
434 |
+
def process_sft_vq0918_pool4_gpt(data, mode='train', tts_data={}):
|
435 |
+
for sample in data:
|
436 |
+
assert 'src' in sample
|
437 |
+
try:
|
438 |
+
entry=json.loads(sample['src'])
|
439 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
440 |
+
|
441 |
+
for conv in entry["conversations"]:
|
442 |
+
if "response_wav" in conv:
|
443 |
+
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
|
444 |
+
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
|
445 |
+
sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
446 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
447 |
+
if sample['speech'].shape[0] > 1:
|
448 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
449 |
+
sample['spk_embedding']=spk_embedding
|
450 |
+
yield {**sample}
|
451 |
+
except Exception as ex:
|
452 |
+
# logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
453 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
454 |
+
|
455 |
+
|
456 |
+
def process_sft_vq0918_pool4_gpt_1010(data, mode='train', tts_data={}):
|
457 |
+
for sample in data:
|
458 |
+
assert 'src' in sample
|
459 |
+
try:
|
460 |
+
entry=json.loads(sample['src'])
|
461 |
+
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
|
462 |
+
|
463 |
+
for conv in entry["conversations"]:
|
464 |
+
if "response_wav" in conv:
|
465 |
+
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
|
466 |
+
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
|
467 |
+
sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
468 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
469 |
+
if sample['speech'].shape[0] > 1:
|
470 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
471 |
+
sample['spk_embedding']=spk_embedding
|
472 |
+
yield {**sample}
|
473 |
+
if "prompt_wav" in conv:
|
474 |
+
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
|
475 |
+
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
|
476 |
+
sample['speech_token']=torch.tensor(np.load(token_npy_path))
|
477 |
+
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
|
478 |
+
if sample['speech'].shape[0] > 1:
|
479 |
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
480 |
+
sample['spk_embedding']=spk_embedding
|
481 |
+
yield {**sample}
|
482 |
+
except Exception as ex:
|
483 |
+
# logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
|
484 |
+
logging.warning('Failed to open {}'.format(wav_path))
|
485 |
+
|
486 |
+
|
487 |
+
def filter(data,
|
488 |
+
max_length=10240,
|
489 |
+
min_length=10,
|
490 |
+
token_max_length=200,
|
491 |
+
token_min_length=1,
|
492 |
+
min_output_input_ratio=0.0005,
|
493 |
+
max_output_input_ratio=1,
|
494 |
+
mode='train'):
|
495 |
+
""" Filter sample according to feature and label length
|
496 |
+
Inplace operation.
|
497 |
+
|
498 |
+
Args::
|
499 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
500 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
501 |
+
min_length: drop utterance which is less than min_length(10ms)
|
502 |
+
token_max_length: drop utterance which is greater than
|
503 |
+
token_max_length, especially when use char unit for
|
504 |
+
english modeling
|
505 |
+
token_min_length: drop utterance which is
|
506 |
+
less than token_max_length
|
507 |
+
min_output_input_ratio: minimal ration of
|
508 |
+
token_length / feats_length(10ms)
|
509 |
+
max_output_input_ratio: maximum ration of
|
510 |
+
token_length / feats_length(10ms)
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
Iterable[{key, wav, label, sample_rate}]
|
514 |
+
"""
|
515 |
+
for sample in data:
|
516 |
+
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
517 |
+
# del sample['audio_data']
|
518 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
519 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
520 |
+
if num_frames < min_length:
|
521 |
+
continue
|
522 |
+
if num_frames > max_length:
|
523 |
+
continue
|
524 |
+
if len(sample['text_token']) < token_min_length:
|
525 |
+
continue
|
526 |
+
if len(sample['text_token']) > token_max_length:
|
527 |
+
continue
|
528 |
+
if len(sample['speech_token']) == 0:
|
529 |
+
continue
|
530 |
+
if num_frames != 0:
|
531 |
+
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
532 |
+
continue
|
533 |
+
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
534 |
+
continue
|
535 |
+
yield sample
|
536 |
+
|
537 |
+
|
538 |
+
def filter_speech_token(data,
|
539 |
+
max_length=10240,
|
540 |
+
min_length=10,
|
541 |
+
token_max_length=5000,
|
542 |
+
token_min_length=1,
|
543 |
+
min_output_input_ratio=0.0005,
|
544 |
+
max_output_input_ratio=30,
|
545 |
+
mode='train'):
|
546 |
+
""" Filter sample according to feature and label length
|
547 |
+
Inplace operation.
|
548 |
+
|
549 |
+
Args::
|
550 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
551 |
+
max_length: drop utterance which is greater than max_length(10ms)
|
552 |
+
min_length: drop utterance which is less than min_length(10ms)
|
553 |
+
token_max_length: drop utterance which is greater than
|
554 |
+
token_max_length, especially when use char unit for
|
555 |
+
english modeling
|
556 |
+
token_min_length: drop utterance which is
|
557 |
+
less than token_max_length
|
558 |
+
min_output_input_ratio: minimal ration of
|
559 |
+
token_length / feats_length(10ms)
|
560 |
+
max_output_input_ratio: maximum ration of
|
561 |
+
token_length / feats_length(10ms)
|
562 |
+
|
563 |
+
Returns:
|
564 |
+
Iterable[{key, wav, label, sample_rate}]
|
565 |
+
"""
|
566 |
+
for sample in data:
|
567 |
+
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
568 |
+
# del sample['audio_data']
|
569 |
+
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
570 |
+
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
571 |
+
if num_frames < min_length:
|
572 |
+
continue
|
573 |
+
if num_frames > max_length:
|
574 |
+
continue
|
575 |
+
if len(sample['speech_token']) < token_min_length:
|
576 |
+
continue
|
577 |
+
if len(sample['speech_token']) > token_max_length:
|
578 |
+
continue
|
579 |
+
if len(sample['speech_token']) == 0:
|
580 |
+
continue
|
581 |
+
if num_frames != 0:
|
582 |
+
if len(sample['speech_token']) / num_frames < min_output_input_ratio:
|
583 |
+
continue
|
584 |
+
if len(sample['speech_token']) / num_frames > max_output_input_ratio:
|
585 |
+
continue
|
586 |
+
yield sample
|
587 |
+
|
588 |
+
|
589 |
+
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
590 |
+
""" Resample data.
|
591 |
+
Inplace operation.
|
592 |
+
|
593 |
+
Args:
|
594 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
595 |
+
resample_rate: target resample rate
|
596 |
+
|
597 |
+
Returns:
|
598 |
+
Iterable[{key, wav, label, sample_rate}]
|
599 |
+
"""
|
600 |
+
for sample in data:
|
601 |
+
assert 'sample_rate' in sample
|
602 |
+
assert 'speech' in sample
|
603 |
+
sample_rate = sample['sample_rate']
|
604 |
+
waveform = sample['speech']
|
605 |
+
if sample_rate != resample_rate:
|
606 |
+
if sample_rate < min_sample_rate:
|
607 |
+
continue
|
608 |
+
sample['sample_rate'] = resample_rate
|
609 |
+
sample['speech'] = torchaudio.transforms.Resample(
|
610 |
+
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
611 |
+
max_val = sample['speech'].abs().max()
|
612 |
+
if max_val > 1:
|
613 |
+
sample['speech'] /= max_val
|
614 |
+
yield sample
|
615 |
+
|
616 |
+
|
617 |
+
def compute_fbank(data,
|
618 |
+
feat_extractor,
|
619 |
+
mode='train'):
|
620 |
+
""" Extract fbank
|
621 |
+
|
622 |
+
Args:
|
623 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
624 |
+
|
625 |
+
Returns:
|
626 |
+
Iterable[{key, feat, label}]
|
627 |
+
"""
|
628 |
+
for sample in data:
|
629 |
+
assert 'sample_rate' in sample
|
630 |
+
assert 'speech' in sample
|
631 |
+
# assert 'utt' in sample
|
632 |
+
# assert 'text_token' in sample
|
633 |
+
waveform = sample['speech']
|
634 |
+
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
635 |
+
sample['speech_feat'] = mat
|
636 |
+
del sample['speech']
|
637 |
+
yield sample
|
638 |
+
|
639 |
+
|
640 |
+
def parse_embedding(data, normalize, mode='train'):
|
641 |
+
""" Parse utt_embedding/spk_embedding
|
642 |
+
|
643 |
+
Args:
|
644 |
+
data: Iterable[{key, wav, label, sample_rate}]
|
645 |
+
|
646 |
+
Returns:
|
647 |
+
Iterable[{key, feat, label}]
|
648 |
+
"""
|
649 |
+
for sample in data:
|
650 |
+
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
651 |
+
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
652 |
+
if normalize:
|
653 |
+
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
654 |
+
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
655 |
+
yield sample
|
656 |
+
|
657 |
+
|
658 |
+
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
659 |
+
""" Decode text to chars or BPE
|
660 |
+
Inplace operation
|
661 |
+
|
662 |
+
Args:
|
663 |
+
data: Iterable[{key, wav, txt, sample_rate}]
|
664 |
+
|
665 |
+
Returns:
|
666 |
+
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
667 |
+
"""
|
668 |
+
tokenizer = get_tokenizer()
|
669 |
+
for sample in data:
|
670 |
+
assert 'text' in sample
|
671 |
+
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
672 |
+
if mode == 'inference':
|
673 |
+
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
674 |
+
yield sample
|
675 |
+
|
676 |
+
|
677 |
+
def shuffle(data, shuffle_size=10000, mode='train'):
|
678 |
+
""" Local shuffle the data
|
679 |
+
|
680 |
+
Args:
|
681 |
+
data: Iterable[{key, feat, label}]
|
682 |
+
shuffle_size: buffer size for shuffle
|
683 |
+
|
684 |
+
Returns:
|
685 |
+
Iterable[{key, feat, label}]
|
686 |
+
"""
|
687 |
+
buf = []
|
688 |
+
for sample in data:
|
689 |
+
buf.append(sample)
|
690 |
+
if len(buf) >= shuffle_size:
|
691 |
+
random.shuffle(buf)
|
692 |
+
for x in buf:
|
693 |
+
yield x
|
694 |
+
buf = []
|
695 |
+
# The sample left over
|
696 |
+
random.shuffle(buf)
|
697 |
+
for x in buf:
|
698 |
+
yield x
|
699 |
+
|
700 |
+
|
701 |
+
def sort(data, sort_size=500, mode='train'):
|
702 |
+
""" Sort the data by feature length.
|
703 |
+
Sort is used after shuffle and before batch, so we can group
|
704 |
+
utts with similar lengths into a batch, and `sort_size` should
|
705 |
+
be less than `shuffle_size`
|
706 |
+
|
707 |
+
Args:
|
708 |
+
data: Iterable[{key, feat, label}]
|
709 |
+
sort_size: buffer size for sort
|
710 |
+
|
711 |
+
Returns:
|
712 |
+
Iterable[{key, feat, label}]
|
713 |
+
"""
|
714 |
+
|
715 |
+
buf = []
|
716 |
+
for sample in data:
|
717 |
+
buf.append(sample)
|
718 |
+
if len(buf) >= sort_size:
|
719 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
720 |
+
for x in buf:
|
721 |
+
yield x
|
722 |
+
buf = []
|
723 |
+
# The sample left over
|
724 |
+
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
725 |
+
for x in buf:
|
726 |
+
yield x
|
727 |
+
|
728 |
+
|
729 |
+
def static_batch(data, batch_size=16):
|
730 |
+
""" Static batch the data by `batch_size`
|
731 |
+
|
732 |
+
Args:
|
733 |
+
data: Iterable[{key, feat, label}]
|
734 |
+
batch_size: batch size
|
735 |
+
|
736 |
+
Returns:
|
737 |
+
Iterable[List[{key, feat, label}]]
|
738 |
+
"""
|
739 |
+
buf = []
|
740 |
+
for sample in data:
|
741 |
+
buf.append(sample)
|
742 |
+
if len(buf) >= batch_size:
|
743 |
+
yield buf
|
744 |
+
buf = []
|
745 |
+
if len(buf) > 0:
|
746 |
+
yield buf
|
747 |
+
|
748 |
+
|
749 |
+
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
750 |
+
""" Dynamic batch the data until the total frames in batch
|
751 |
+
reach `max_frames_in_batch`
|
752 |
+
|
753 |
+
Args:
|
754 |
+
data: Iterable[{key, feat, label}]
|
755 |
+
max_frames_in_batch: max_frames in one batch
|
756 |
+
|
757 |
+
Returns:
|
758 |
+
Iterable[List[{key, feat, label}]]
|
759 |
+
"""
|
760 |
+
buf = []
|
761 |
+
longest_frames = 0
|
762 |
+
for sample in data:
|
763 |
+
assert 'speech_feat' in sample
|
764 |
+
assert isinstance(sample['speech_feat'], torch.Tensor)
|
765 |
+
new_sample_frames = sample['speech_feat'].size(0)
|
766 |
+
longest_frames = max(longest_frames, new_sample_frames)
|
767 |
+
frames_after_padding = longest_frames * (len(buf) + 1)
|
768 |
+
if frames_after_padding > max_frames_in_batch:
|
769 |
+
yield buf
|
770 |
+
buf = [sample]
|
771 |
+
longest_frames = new_sample_frames
|
772 |
+
else:
|
773 |
+
buf.append(sample)
|
774 |
+
if len(buf) > 0:
|
775 |
+
yield buf
|
776 |
+
|
777 |
+
|
778 |
+
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
779 |
+
""" Wrapper for static/dynamic batch
|
780 |
+
"""
|
781 |
+
if mode == 'inference':
|
782 |
+
return static_batch(data, 1)
|
783 |
+
else:
|
784 |
+
if batch_type == 'static':
|
785 |
+
return static_batch(data, batch_size)
|
786 |
+
elif batch_type == 'dynamic':
|
787 |
+
return dynamic_batch(data, max_frames_in_batch)
|
788 |
+
else:
|
789 |
+
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
790 |
+
|
791 |
+
|
792 |
+
def padding(data, use_spk_embedding, mode='train'):
|
793 |
+
""" Padding the data into training data
|
794 |
+
|
795 |
+
Args:
|
796 |
+
data: Iterable[List[{key, feat, label}]]
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
800 |
+
"""
|
801 |
+
for sample in data:
|
802 |
+
assert isinstance(sample, list)
|
803 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
804 |
+
dtype=torch.int32)
|
805 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
806 |
+
|
807 |
+
utts = [sample[i]['utt'] for i in order]
|
808 |
+
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
809 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
810 |
+
speech_token = pad_sequence(speech_token,
|
811 |
+
batch_first=True,
|
812 |
+
padding_value=0)
|
813 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
814 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
815 |
+
speech_feat = pad_sequence(speech_feat,
|
816 |
+
batch_first=True,
|
817 |
+
padding_value=0)
|
818 |
+
text = [sample[i]['text'] for i in order]
|
819 |
+
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
820 |
+
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
821 |
+
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
822 |
+
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
823 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
824 |
+
batch = {
|
825 |
+
"utts": utts,
|
826 |
+
"speech_token": speech_token,
|
827 |
+
"speech_token_len": speech_token_len,
|
828 |
+
"speech_feat": speech_feat,
|
829 |
+
"speech_feat_len": speech_feat_len,
|
830 |
+
"text": text,
|
831 |
+
"text_token": text_token,
|
832 |
+
"text_token_len": text_token_len,
|
833 |
+
"utt_embedding": utt_embedding,
|
834 |
+
"spk_embedding": spk_embedding,
|
835 |
+
}
|
836 |
+
if mode == 'inference':
|
837 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
838 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
839 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
840 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
841 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
842 |
+
batch.update({'tts_text': tts_text,
|
843 |
+
'tts_index': tts_index,
|
844 |
+
'tts_text_token': tts_text_token,
|
845 |
+
'tts_text_token_len': tts_text_token_len})
|
846 |
+
if use_spk_embedding is True:
|
847 |
+
batch["embedding"] = batch["spk_embedding"]
|
848 |
+
else:
|
849 |
+
batch["embedding"] = batch["utt_embedding"]
|
850 |
+
yield batch
|
851 |
+
|
852 |
+
|
853 |
+
|
854 |
+
def padding_speech_token(data, use_spk_embedding, mode='train'):
|
855 |
+
""" Padding the data into training data
|
856 |
+
|
857 |
+
Args:
|
858 |
+
data: Iterable[List[{key, feat, label}]]
|
859 |
+
|
860 |
+
Returns:
|
861 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
862 |
+
"""
|
863 |
+
for sample in data:
|
864 |
+
assert isinstance(sample, list)
|
865 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
866 |
+
dtype=torch.int32)
|
867 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
868 |
+
|
869 |
+
# utts = [sample[i]['utt'] for i in order]
|
870 |
+
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
871 |
+
try:
|
872 |
+
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
|
873 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
874 |
+
speech_token = pad_sequence(speech_token,
|
875 |
+
batch_first=True,
|
876 |
+
padding_value=0)
|
877 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
878 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
879 |
+
speech_feat = pad_sequence(speech_feat,
|
880 |
+
batch_first=True,
|
881 |
+
padding_value=0)
|
882 |
+
batch = {
|
883 |
+
"speech_token": speech_token,
|
884 |
+
"speech_token_len": speech_token_len,
|
885 |
+
"speech_feat": speech_feat,
|
886 |
+
"speech_feat_len": speech_feat_len,
|
887 |
+
}
|
888 |
+
if mode == 'inference':
|
889 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
890 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
891 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
892 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
893 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
894 |
+
batch.update({'tts_text': tts_text,
|
895 |
+
'tts_index': tts_index,
|
896 |
+
'tts_text_token': tts_text_token,
|
897 |
+
'tts_text_token_len': tts_text_token_len})
|
898 |
+
# if use_spk_embedding is True:
|
899 |
+
# batch["embedding"] = batch["spk_embedding"]
|
900 |
+
# else:
|
901 |
+
# batch["embedding"] = batch["utt_embedding"]
|
902 |
+
batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
|
903 |
+
yield batch
|
904 |
+
except Exception as ex:
|
905 |
+
logging.warning(' ex info {}'.format(ex))
|
906 |
+
# assert False
|
907 |
+
|
908 |
+
|
909 |
+
|
910 |
+
def padding_speech_token_spk(data, use_spk_embedding, mode='train'):
|
911 |
+
""" Padding the data into training data
|
912 |
+
|
913 |
+
Args:
|
914 |
+
data: Iterable[List[{key, feat, label}]]
|
915 |
+
|
916 |
+
Returns:
|
917 |
+
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
918 |
+
"""
|
919 |
+
for sample in data:
|
920 |
+
assert isinstance(sample, list)
|
921 |
+
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
922 |
+
dtype=torch.int32)
|
923 |
+
order = torch.argsort(speech_feat_len, descending=True)
|
924 |
+
|
925 |
+
# utts = [sample[i]['utt'] for i in order]
|
926 |
+
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
927 |
+
try:
|
928 |
+
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
|
929 |
+
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
930 |
+
speech_token = pad_sequence(speech_token,
|
931 |
+
batch_first=True,
|
932 |
+
padding_value=0)
|
933 |
+
speech_feat = [sample[i]['speech_feat'] for i in order]
|
934 |
+
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
935 |
+
speech_feat = pad_sequence(speech_feat,
|
936 |
+
batch_first=True,
|
937 |
+
padding_value=0)
|
938 |
+
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
939 |
+
batch = {
|
940 |
+
"speech_token": speech_token,
|
941 |
+
"speech_token_len": speech_token_len,
|
942 |
+
"speech_feat": speech_feat,
|
943 |
+
"speech_feat_len": speech_feat_len,
|
944 |
+
"spk_embedding": spk_embedding,
|
945 |
+
}
|
946 |
+
if mode == 'inference':
|
947 |
+
tts_text = [sample[i]['tts_text'] for i in order]
|
948 |
+
tts_index = [sample[i]['tts_index'] for i in order]
|
949 |
+
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
950 |
+
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
951 |
+
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
952 |
+
batch.update({'tts_text': tts_text,
|
953 |
+
'tts_index': tts_index,
|
954 |
+
'tts_text_token': tts_text_token,
|
955 |
+
'tts_text_token_len': tts_text_token_len})
|
956 |
+
# if use_spk_embedding is True:
|
957 |
+
# batch["embedding"] = batch["spk_embedding"]
|
958 |
+
# else:
|
959 |
+
# batch["embedding"] = batch["utt_embedding"]
|
960 |
+
# batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
|
961 |
+
batch["embedding"] = batch["spk_embedding"]
|
962 |
+
yield batch
|
963 |
+
except Exception as ex:
|
964 |
+
logging.warning(' ex info {}'.format(ex))
|
965 |
+
# assert False
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from einops import pack, rearrange, repeat
|
17 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
18 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
19 |
+
|
20 |
+
|
21 |
+
class ConditionalDecoder(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
in_channels,
|
25 |
+
out_channels,
|
26 |
+
channels=(256, 256),
|
27 |
+
dropout=0.05,
|
28 |
+
attention_head_dim=64,
|
29 |
+
n_blocks=1,
|
30 |
+
num_mid_blocks=2,
|
31 |
+
num_heads=4,
|
32 |
+
act_fn="snake",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
36 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
37 |
+
"""
|
38 |
+
super().__init__()
|
39 |
+
channels = tuple(channels)
|
40 |
+
self.in_channels = in_channels
|
41 |
+
self.out_channels = out_channels
|
42 |
+
|
43 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
44 |
+
time_embed_dim = channels[0] * 4
|
45 |
+
self.time_mlp = TimestepEmbedding(
|
46 |
+
in_channels=in_channels,
|
47 |
+
time_embed_dim=time_embed_dim,
|
48 |
+
act_fn="silu",
|
49 |
+
)
|
50 |
+
self.down_blocks = nn.ModuleList([])
|
51 |
+
self.mid_blocks = nn.ModuleList([])
|
52 |
+
self.up_blocks = nn.ModuleList([])
|
53 |
+
|
54 |
+
output_channel = in_channels
|
55 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
56 |
+
input_channel = output_channel
|
57 |
+
output_channel = channels[i]
|
58 |
+
is_last = i == len(channels) - 1
|
59 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
60 |
+
transformer_blocks = nn.ModuleList(
|
61 |
+
[
|
62 |
+
BasicTransformerBlock(
|
63 |
+
dim=output_channel,
|
64 |
+
num_attention_heads=num_heads,
|
65 |
+
attention_head_dim=attention_head_dim,
|
66 |
+
dropout=dropout,
|
67 |
+
activation_fn=act_fn,
|
68 |
+
)
|
69 |
+
for _ in range(n_blocks)
|
70 |
+
]
|
71 |
+
)
|
72 |
+
downsample = (
|
73 |
+
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
74 |
+
)
|
75 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
76 |
+
|
77 |
+
for i in range(num_mid_blocks):
|
78 |
+
input_channel = channels[-1]
|
79 |
+
out_channels = channels[-1]
|
80 |
+
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
81 |
+
|
82 |
+
transformer_blocks = nn.ModuleList(
|
83 |
+
[
|
84 |
+
BasicTransformerBlock(
|
85 |
+
dim=output_channel,
|
86 |
+
num_attention_heads=num_heads,
|
87 |
+
attention_head_dim=attention_head_dim,
|
88 |
+
dropout=dropout,
|
89 |
+
activation_fn=act_fn,
|
90 |
+
)
|
91 |
+
for _ in range(n_blocks)
|
92 |
+
]
|
93 |
+
)
|
94 |
+
|
95 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
96 |
+
|
97 |
+
channels = channels[::-1] + (channels[0],)
|
98 |
+
for i in range(len(channels) - 1):
|
99 |
+
input_channel = channels[i] * 2
|
100 |
+
output_channel = channels[i + 1]
|
101 |
+
is_last = i == len(channels) - 2
|
102 |
+
resnet = ResnetBlock1D(
|
103 |
+
dim=input_channel,
|
104 |
+
dim_out=output_channel,
|
105 |
+
time_emb_dim=time_embed_dim,
|
106 |
+
)
|
107 |
+
transformer_blocks = nn.ModuleList(
|
108 |
+
[
|
109 |
+
BasicTransformerBlock(
|
110 |
+
dim=output_channel,
|
111 |
+
num_attention_heads=num_heads,
|
112 |
+
attention_head_dim=attention_head_dim,
|
113 |
+
dropout=dropout,
|
114 |
+
activation_fn=act_fn,
|
115 |
+
)
|
116 |
+
for _ in range(n_blocks)
|
117 |
+
]
|
118 |
+
)
|
119 |
+
upsample = (
|
120 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
121 |
+
if not is_last
|
122 |
+
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
123 |
+
)
|
124 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
125 |
+
self.final_block = Block1D(channels[-1], channels[-1])
|
126 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
127 |
+
self.initialize_weights()
|
128 |
+
|
129 |
+
|
130 |
+
def initialize_weights(self):
|
131 |
+
for m in self.modules():
|
132 |
+
if isinstance(m, nn.Conv1d):
|
133 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
134 |
+
if m.bias is not None:
|
135 |
+
nn.init.constant_(m.bias, 0)
|
136 |
+
elif isinstance(m, nn.GroupNorm):
|
137 |
+
nn.init.constant_(m.weight, 1)
|
138 |
+
nn.init.constant_(m.bias, 0)
|
139 |
+
elif isinstance(m, nn.Linear):
|
140 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
141 |
+
if m.bias is not None:
|
142 |
+
nn.init.constant_(m.bias, 0)
|
143 |
+
|
144 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
145 |
+
"""Forward pass of the UNet1DConditional model.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
149 |
+
mask (_type_): shape (batch_size, 1, time)
|
150 |
+
t (_type_): shape (batch_size)
|
151 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
152 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
153 |
+
|
154 |
+
Raises:
|
155 |
+
ValueError: _description_
|
156 |
+
ValueError: _description_
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
_type_: _description_
|
160 |
+
"""
|
161 |
+
|
162 |
+
t = self.time_embeddings(t)
|
163 |
+
t = self.time_mlp(t)
|
164 |
+
|
165 |
+
x = pack([x, mu], "b * t")[0]
|
166 |
+
|
167 |
+
if spks is not None:
|
168 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
169 |
+
x = pack([x, spks], "b * t")[0]
|
170 |
+
if cond is not None:
|
171 |
+
x = pack([x, cond], "b * t")[0]
|
172 |
+
|
173 |
+
hiddens = []
|
174 |
+
masks = [mask]
|
175 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
176 |
+
mask_down = masks[-1]
|
177 |
+
x = resnet(x, mask_down, t)
|
178 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
179 |
+
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
180 |
+
for transformer_block in transformer_blocks:
|
181 |
+
x = transformer_block(
|
182 |
+
hidden_states=x,
|
183 |
+
attention_mask=attn_mask,
|
184 |
+
timestep=t,
|
185 |
+
)
|
186 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
187 |
+
hiddens.append(x) # Save hidden states for skip connections
|
188 |
+
x = downsample(x * mask_down)
|
189 |
+
masks.append(mask_down[:, :, ::2])
|
190 |
+
masks = masks[:-1]
|
191 |
+
mask_mid = masks[-1]
|
192 |
+
|
193 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
194 |
+
x = resnet(x, mask_mid, t)
|
195 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
196 |
+
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
197 |
+
for transformer_block in transformer_blocks:
|
198 |
+
x = transformer_block(
|
199 |
+
hidden_states=x,
|
200 |
+
attention_mask=attn_mask,
|
201 |
+
timestep=t,
|
202 |
+
)
|
203 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
204 |
+
|
205 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
206 |
+
mask_up = masks.pop()
|
207 |
+
skip = hiddens.pop()
|
208 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
209 |
+
x = resnet(x, mask_up, t)
|
210 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
211 |
+
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
212 |
+
for transformer_block in transformer_blocks:
|
213 |
+
x = transformer_block(
|
214 |
+
hidden_states=x,
|
215 |
+
attention_mask=attn_mask,
|
216 |
+
timestep=t,
|
217 |
+
)
|
218 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
219 |
+
x = upsample(x * mask_up)
|
220 |
+
x = self.final_block(x, mask_up)
|
221 |
+
output = self.final_proj(x * mask_up)
|
222 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
22 |
+
|
23 |
+
|
24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_size: int = 512,
|
27 |
+
output_size: int = 80,
|
28 |
+
spk_embed_dim: int = 192,
|
29 |
+
output_type: str = "mel",
|
30 |
+
vocab_size: int = 4096,
|
31 |
+
input_frame_rate: int = 50,
|
32 |
+
only_mask_loss: bool = True,
|
33 |
+
encoder: torch.nn.Module = None,
|
34 |
+
length_regulator: torch.nn.Module = None,
|
35 |
+
decoder: torch.nn.Module = None,
|
36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
37 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
38 |
+
super().__init__()
|
39 |
+
self.input_size = input_size
|
40 |
+
self.output_size = output_size
|
41 |
+
self.decoder_conf = decoder_conf
|
42 |
+
self.mel_feat_conf = mel_feat_conf
|
43 |
+
self.vocab_size = vocab_size
|
44 |
+
self.output_type = output_type
|
45 |
+
self.input_frame_rate = input_frame_rate
|
46 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
47 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
48 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
49 |
+
self.encoder = encoder
|
50 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
51 |
+
self.decoder = decoder
|
52 |
+
self.length_regulator = length_regulator
|
53 |
+
self.only_mask_loss = only_mask_loss
|
54 |
+
|
55 |
+
def forward(
|
56 |
+
self,
|
57 |
+
batch: dict,
|
58 |
+
device: torch.device,
|
59 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
60 |
+
token = batch['speech_token'].to(device)
|
61 |
+
token_len = batch['speech_token_len'].to(device)
|
62 |
+
feat = batch['speech_feat'].to(device)
|
63 |
+
feat_len = batch['speech_feat_len'].to(device)
|
64 |
+
embedding = batch['embedding'].to(device)
|
65 |
+
|
66 |
+
# xvec projection
|
67 |
+
embedding = F.normalize(embedding, dim=1)
|
68 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
69 |
+
# embedding=None
|
70 |
+
|
71 |
+
# concat text and prompt_text
|
72 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
73 |
+
# print(token.max(),self.input_embedding)
|
74 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
75 |
+
|
76 |
+
|
77 |
+
# text encode
|
78 |
+
h, h_lengths = self.encoder(token, token_len)
|
79 |
+
h = self.encoder_proj(h)
|
80 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
81 |
+
|
82 |
+
# get conditions
|
83 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
84 |
+
for i, j in enumerate(feat_len):
|
85 |
+
if random.random() < 0.5:
|
86 |
+
continue
|
87 |
+
index = random.randint(0, int(0.8 * j))
|
88 |
+
conds[i, :index] = feat[i, :index]
|
89 |
+
conds = conds.transpose(1, 2)
|
90 |
+
|
91 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
92 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
93 |
+
loss, _ = self.decoder.compute_loss(
|
94 |
+
feat.transpose(1, 2).contiguous(),
|
95 |
+
mask.unsqueeze(1),
|
96 |
+
h.transpose(1, 2).contiguous(),
|
97 |
+
embedding,
|
98 |
+
cond=conds
|
99 |
+
)
|
100 |
+
return {'loss': loss}
|
101 |
+
|
102 |
+
@torch.inference_mode()
|
103 |
+
def inference(self,
|
104 |
+
token,
|
105 |
+
token_len,
|
106 |
+
prompt_token,
|
107 |
+
prompt_token_len,
|
108 |
+
prompt_feat,
|
109 |
+
prompt_feat_len,
|
110 |
+
embedding):
|
111 |
+
assert token.shape[0] == 1
|
112 |
+
# xvec projection
|
113 |
+
embedding = F.normalize(embedding, dim=1)
|
114 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
115 |
+
|
116 |
+
# concat text and prompt_text
|
117 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
118 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
119 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
120 |
+
|
121 |
+
# text encode
|
122 |
+
h, h_lengths = self.encoder(token, token_len)
|
123 |
+
h = self.encoder_proj(h)
|
124 |
+
feat_len = (token_len / self.input_frame_rate * 22050 / 256).int()
|
125 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
126 |
+
|
127 |
+
# get conditions
|
128 |
+
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
129 |
+
if prompt_feat.shape[1] != 0:
|
130 |
+
for i, j in enumerate(prompt_feat_len):
|
131 |
+
conds[i, :j] = prompt_feat[i]
|
132 |
+
conds = conds.transpose(1, 2)
|
133 |
+
|
134 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
135 |
+
feat = self.decoder(
|
136 |
+
mu=h.transpose(1, 2).contiguous(),
|
137 |
+
mask=mask.unsqueeze(1),
|
138 |
+
spks=embedding,
|
139 |
+
cond=conds,
|
140 |
+
n_timesteps=10
|
141 |
+
)
|
142 |
+
if prompt_feat.shape[1] != 0:
|
143 |
+
feat = feat[:, :, prompt_feat.shape[1]:]
|
144 |
+
return feat
|
cosyvoice/flow/flow_gradtts.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
22 |
+
|
23 |
+
|
24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_size: int = 512,
|
27 |
+
output_size: int = 80,
|
28 |
+
spk_embed_dim: int = 192,
|
29 |
+
output_type: str = "mel",
|
30 |
+
vocab_size: int = 4096,
|
31 |
+
input_frame_rate: int = 50,
|
32 |
+
only_mask_loss: bool = True,
|
33 |
+
encoder: torch.nn.Module = None,
|
34 |
+
length_regulator: torch.nn.Module = None,
|
35 |
+
decoder: torch.nn.Module = None,
|
36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
37 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
38 |
+
super().__init__()
|
39 |
+
self.input_size = input_size
|
40 |
+
self.output_size = output_size
|
41 |
+
self.decoder_conf = decoder_conf
|
42 |
+
self.mel_feat_conf = mel_feat_conf
|
43 |
+
self.vocab_size = vocab_size
|
44 |
+
self.output_type = output_type
|
45 |
+
self.input_frame_rate = input_frame_rate
|
46 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
47 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
48 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
49 |
+
self.encoder = encoder
|
50 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
51 |
+
self.decoder = decoder
|
52 |
+
self.length_regulator = length_regulator
|
53 |
+
self.only_mask_loss = only_mask_loss
|
54 |
+
|
55 |
+
def forward(
|
56 |
+
self,
|
57 |
+
batch: dict,
|
58 |
+
device: torch.device,
|
59 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
60 |
+
token = batch['speech_token'].to(device)
|
61 |
+
token_len = batch['speech_token_len'].to(device)
|
62 |
+
feat = batch['speech_feat'].to(device)
|
63 |
+
feat_len = batch['speech_feat_len'].to(device)
|
64 |
+
embedding = batch['embedding'].to(device)
|
65 |
+
|
66 |
+
# xvec projection
|
67 |
+
embedding = F.normalize(embedding, dim=1)
|
68 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
69 |
+
# embedding=None
|
70 |
+
|
71 |
+
# concat text and prompt_text
|
72 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
73 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
74 |
+
|
75 |
+
# text encode
|
76 |
+
h, h_lengths = self.encoder(token, token_len)
|
77 |
+
h = self.encoder_proj(h)
|
78 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
79 |
+
|
80 |
+
# get conditions
|
81 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
82 |
+
# for i, j in enumerate(feat_len):
|
83 |
+
# if random.random() < 0.5:
|
84 |
+
# continue
|
85 |
+
# index = random.randint(0, int(0.3 * j))
|
86 |
+
# conds[i, :index] = feat[i, :index]
|
87 |
+
conds = conds.transpose(1, 2)
|
88 |
+
|
89 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
90 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
91 |
+
loss, _ = self.decoder.compute_loss(
|
92 |
+
feat.transpose(1, 2).contiguous(),
|
93 |
+
mask.unsqueeze(1),
|
94 |
+
h.transpose(1, 2).contiguous(),
|
95 |
+
embedding,
|
96 |
+
cond=conds
|
97 |
+
)
|
98 |
+
return {'loss': loss}
|
99 |
+
|
100 |
+
@torch.inference_mode()
|
101 |
+
def inference(self,
|
102 |
+
token,
|
103 |
+
token_len,
|
104 |
+
prompt_token,
|
105 |
+
prompt_token_len,
|
106 |
+
prompt_feat,
|
107 |
+
prompt_feat_len,
|
108 |
+
embedding):
|
109 |
+
assert token.shape[0] == 1
|
110 |
+
# xvec projection
|
111 |
+
embedding = F.normalize(embedding, dim=1)
|
112 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
113 |
+
|
114 |
+
# concat text and prompt_text
|
115 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
116 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
117 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
118 |
+
|
119 |
+
# text encode
|
120 |
+
h, h_lengths = self.encoder(token, token_len)
|
121 |
+
h = self.encoder_proj(h)
|
122 |
+
feat_len = (token_len / self.input_frame_rate * 22050 / 256).int()
|
123 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
124 |
+
|
125 |
+
# get conditions
|
126 |
+
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device)
|
127 |
+
if prompt_feat.shape[1] != 0:
|
128 |
+
for i, j in enumerate(prompt_feat_len):
|
129 |
+
conds[i, :j] = prompt_feat[i]
|
130 |
+
conds = conds.transpose(1, 2)
|
131 |
+
|
132 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
133 |
+
feat = self.decoder(
|
134 |
+
mu=h.transpose(1, 2).contiguous(),
|
135 |
+
mask=mask.unsqueeze(1),
|
136 |
+
spks=embedding,
|
137 |
+
cond=conds,
|
138 |
+
n_timesteps=10
|
139 |
+
)
|
140 |
+
if prompt_feat.shape[1] != 0:
|
141 |
+
feat = feat[:, :, prompt_feat.shape[1]:]
|
142 |
+
return feat
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from matcha.models.components.flow_matching import BASECFM
|
17 |
+
|
18 |
+
class ConditionalCFM(BASECFM):
|
19 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
20 |
+
super().__init__(
|
21 |
+
n_feats=in_channels,
|
22 |
+
cfm_params=cfm_params,
|
23 |
+
n_spks=n_spks,
|
24 |
+
spk_emb_dim=spk_emb_dim,
|
25 |
+
)
|
26 |
+
self.t_scheduler = cfm_params.t_scheduler
|
27 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
28 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
29 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
30 |
+
# Just change the architecture of the estimator here
|
31 |
+
self.estimator = estimator
|
32 |
+
|
33 |
+
@torch.inference_mode()
|
34 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
35 |
+
"""Forward diffusion
|
36 |
+
|
37 |
+
Args:
|
38 |
+
mu (torch.Tensor): output of encoder
|
39 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
40 |
+
mask (torch.Tensor): output_mask
|
41 |
+
shape: (batch_size, 1, mel_timesteps)
|
42 |
+
n_timesteps (int): number of diffusion steps
|
43 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
44 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
45 |
+
shape: (batch_size, spk_emb_dim)
|
46 |
+
cond: Not used but kept for future purposes
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
sample: generated mel-spectrogram
|
50 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
+
"""
|
52 |
+
torch.manual_seed(42)
|
53 |
+
|
54 |
+
z = torch.randn_like(mu) * temperature
|
55 |
+
|
56 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
57 |
+
if self.t_scheduler == 'cosine':
|
58 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
59 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
60 |
+
|
61 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
62 |
+
"""
|
63 |
+
Fixed euler solver for ODEs.
|
64 |
+
Args:
|
65 |
+
x (torch.Tensor): random noise
|
66 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
67 |
+
shape: (n_timesteps + 1,)
|
68 |
+
mu (torch.Tensor): output of encoder
|
69 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
70 |
+
mask (torch.Tensor): output_mask
|
71 |
+
shape: (batch_size, 1, mel_timesteps)
|
72 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
73 |
+
shape: (batch_size, spk_emb_dim)
|
74 |
+
cond: Not used but kept for future purposes
|
75 |
+
"""
|
76 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
77 |
+
|
78 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
79 |
+
# Or in future might add like a return_all_steps flag
|
80 |
+
sol = []
|
81 |
+
|
82 |
+
for step in range(1, len(t_span)):
|
83 |
+
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
84 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
85 |
+
if self.inference_cfg_rate > 0:
|
86 |
+
cfg_dphi_dt = self.estimator(
|
87 |
+
x, mask,
|
88 |
+
torch.zeros_like(mu), t,
|
89 |
+
torch.zeros_like(spks) if spks is not None else None,
|
90 |
+
torch.zeros_like(cond)
|
91 |
+
)
|
92 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
93 |
+
self.inference_cfg_rate * cfg_dphi_dt)
|
94 |
+
x = x + dt * dphi_dt
|
95 |
+
t = t + dt
|
96 |
+
|
97 |
+
sol.append(x)
|
98 |
+
if step < len(t_span) - 1:
|
99 |
+
dt = t_span[step + 1] - t
|
100 |
+
|
101 |
+
return sol[-1]
|
102 |
+
|
103 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
104 |
+
"""Computes diffusion loss
|
105 |
+
|
106 |
+
Args:
|
107 |
+
x1 (torch.Tensor): Target
|
108 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
109 |
+
mask (torch.Tensor): target mask
|
110 |
+
shape: (batch_size, 1, mel_timesteps)
|
111 |
+
mu (torch.Tensor): output of encoder
|
112 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
113 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
114 |
+
shape: (batch_size, spk_emb_dim)
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
loss: conditional flow matching loss
|
118 |
+
y: conditional flow
|
119 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
120 |
+
"""
|
121 |
+
b, _, t = mu.shape
|
122 |
+
|
123 |
+
# random timestep
|
124 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
125 |
+
if self.t_scheduler == 'cosine':
|
126 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
127 |
+
# sample noise p(x_0)
|
128 |
+
z = torch.randn_like(x1)
|
129 |
+
|
130 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
131 |
+
u = x1 - (1 - self.sigma_min) * z
|
132 |
+
|
133 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
134 |
+
if self.training_cfg_rate > 0:
|
135 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
136 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
137 |
+
spks = spks * cfg_mask.view(-1, 1)
|
138 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
139 |
+
|
140 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
141 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
142 |
+
return loss, y
|
cosyvoice/flow/flow_matching_dit.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import pdb
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from matcha.models.components.flow_matching import BASECFM
|
19 |
+
|
20 |
+
|
21 |
+
class ConditionalCFM(BASECFM):
|
22 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
23 |
+
super().__init__(
|
24 |
+
n_feats=in_channels,
|
25 |
+
cfm_params=cfm_params,
|
26 |
+
n_spks=n_spks,
|
27 |
+
spk_emb_dim=spk_emb_dim,
|
28 |
+
)
|
29 |
+
self.t_scheduler = cfm_params.t_scheduler
|
30 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
31 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
32 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
33 |
+
# Just change the architecture of the estimator here
|
34 |
+
|
35 |
+
io_channels = 80
|
36 |
+
input_concat_dim = 80
|
37 |
+
embed_dim = 768
|
38 |
+
depth = 24
|
39 |
+
num_heads = 24
|
40 |
+
project_cond_tokens = False
|
41 |
+
transformer_type = "continuous_transformer"
|
42 |
+
self.estimator = estimator
|
43 |
+
|
44 |
+
@torch.inference_mode()
|
45 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
46 |
+
"""Forward diffusion
|
47 |
+
|
48 |
+
Args:
|
49 |
+
mu (torch.Tensor): output of encoder
|
50 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
+
mask (torch.Tensor): output_mask
|
52 |
+
shape: (batch_size, 1, mel_timesteps)
|
53 |
+
n_timesteps (int): number of diffusion steps
|
54 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
55 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
56 |
+
shape: (batch_size, spk_emb_dim)
|
57 |
+
cond: Not used but kept for future purposes
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
sample: generated mel-spectrogram
|
61 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
62 |
+
"""
|
63 |
+
z = torch.randn_like(mu) * temperature
|
64 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
65 |
+
if self.t_scheduler == 'cosine':
|
66 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
67 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
68 |
+
|
69 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
70 |
+
"""
|
71 |
+
Fixed euler solver for ODEs.
|
72 |
+
Args:
|
73 |
+
x (torch.Tensor): random noise torch.Size([1, 80, 621])
|
74 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
75 |
+
shape: (n_timesteps + 1,)
|
76 |
+
mu (torch.Tensor): output of encoder
|
77 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
78 |
+
mask (torch.Tensor): output_mask
|
79 |
+
shape: (batch_size, 1, mel_timesteps)
|
80 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
81 |
+
shape: (batch_size, spk_emb_dim)
|
82 |
+
cond: Not used but kept for future purposes
|
83 |
+
"""
|
84 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
85 |
+
|
86 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
87 |
+
# Or in future might add like a return_all_steps flag
|
88 |
+
sol = []
|
89 |
+
|
90 |
+
cfg_dropout_prob = 0.1
|
91 |
+
cfg_scale = 1.0
|
92 |
+
|
93 |
+
# cfg_dropout_prob = 0.0
|
94 |
+
# cfg_scale = 3.0
|
95 |
+
|
96 |
+
for step in range(1, len(t_span)):
|
97 |
+
# dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
98 |
+
# pdb.set_trace()
|
99 |
+
dphi_dt = self.estimator(x, # [bs, 80, 229]
|
100 |
+
t[None], # (bs,)
|
101 |
+
global_embed=spks,
|
102 |
+
input_concat_cond=mu,
|
103 |
+
mask=mask[0], # [bs, 229]
|
104 |
+
cfg_dropout_prob=cfg_dropout_prob, cfg_scale=cfg_scale)
|
105 |
+
|
106 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
107 |
+
if self.inference_cfg_rate > 0:
|
108 |
+
# cfg_dphi_dt = self.estimator(
|
109 |
+
# x, mask,
|
110 |
+
# torch.zeros_like(mu), t,
|
111 |
+
# torch.zeros_like(spks) if spks is not None else None,
|
112 |
+
# torch.zeros_like(cond)
|
113 |
+
# )
|
114 |
+
cfg_dphi_dt = self.estimator(x, # [bs, 80, 229]
|
115 |
+
t[None], # (bs,)
|
116 |
+
global_embed=torch.zeros_like(spks) if spks is not None else None,
|
117 |
+
input_concat_cond=torch.zeros_like(mu),
|
118 |
+
mask=mask[0], # [bs, 229]
|
119 |
+
cfg_dropout_prob=cfg_dropout_prob, cfg_scale=cfg_scale)
|
120 |
+
|
121 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
122 |
+
self.inference_cfg_rate * cfg_dphi_dt)
|
123 |
+
x = x + dt * dphi_dt
|
124 |
+
t = t + dt
|
125 |
+
sol.append(x)
|
126 |
+
if step < len(t_span) - 1:
|
127 |
+
dt = t_span[step + 1] - t
|
128 |
+
|
129 |
+
return sol[-1]
|
130 |
+
|
131 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
132 |
+
"""Computes diffusion loss
|
133 |
+
|
134 |
+
Args:
|
135 |
+
x1 (torch.Tensor): Target
|
136 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
137 |
+
mask (torch.Tensor): target mask
|
138 |
+
shape: (batch_size, 1, mel_timesteps)
|
139 |
+
mu (torch.Tensor): output of encoder
|
140 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
141 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
142 |
+
shape: (batch_size, spk_emb_dim)
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
loss: conditional flow matching loss
|
146 |
+
y: conditional flow
|
147 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
148 |
+
"""
|
149 |
+
b, _, t = mu.shape
|
150 |
+
|
151 |
+
# random timestep
|
152 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
153 |
+
if self.t_scheduler == 'cosine':
|
154 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
155 |
+
# sample noise p(x_0)
|
156 |
+
z = torch.randn_like(x1)
|
157 |
+
|
158 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
159 |
+
u = x1 - (1 - self.sigma_min) * z
|
160 |
+
|
161 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
162 |
+
if self.training_cfg_rate > 0:
|
163 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
164 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
165 |
+
spks = spks * cfg_mask.view(-1, 1)
|
166 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
167 |
+
|
168 |
+
# pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
169 |
+
pred = self.estimator(y, # [bs, 80, 229]
|
170 |
+
t.squeeze(1, 2), # (bs,)
|
171 |
+
global_embed=spks,
|
172 |
+
input_concat_cond=mu,
|
173 |
+
mask=mask.squeeze(1), # [bs, 229]
|
174 |
+
cfg_dropout_prob=0.1)
|
175 |
+
|
176 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
177 |
+
return loss, y
|
178 |
+
|
179 |
+
# def estimator_trans(self):
|
180 |
+
# pass
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from cosyvoice.utils.mask import make_pad_mask
|
18 |
+
|
19 |
+
|
20 |
+
class InterpolateRegulator(nn.Module):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
channels: int,
|
24 |
+
sampling_ratios: Tuple,
|
25 |
+
out_channels: int = None,
|
26 |
+
groups: int = 1,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
self.sampling_ratios = sampling_ratios
|
30 |
+
out_channels = out_channels or channels
|
31 |
+
model = nn.ModuleList([])
|
32 |
+
if len(sampling_ratios) > 0:
|
33 |
+
for _ in sampling_ratios:
|
34 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
35 |
+
norm = nn.GroupNorm(groups, channels)
|
36 |
+
act = nn.Mish()
|
37 |
+
model.extend([module, norm, act])
|
38 |
+
model.append(
|
39 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
40 |
+
)
|
41 |
+
self.model = nn.Sequential(*model)
|
42 |
+
|
43 |
+
def forward(self, x, ylens=None):
|
44 |
+
# x in (B, T, D)
|
45 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
46 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
47 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
48 |
+
olens = ylens
|
49 |
+
return out * mask, olens
|
cosyvoice/flow/stable/adp.py
ADDED
@@ -0,0 +1,1591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied and modified from https://github.com/archinetai/audio-diffusion-pytorch/blob/v0.0.94/audio_diffusion_pytorch/modules.py under MIT License
|
2 |
+
# License can be found in LICENSES/LICENSE_ADP.txt
|
3 |
+
|
4 |
+
import math
|
5 |
+
from inspect import isfunction
|
6 |
+
from math import ceil, floor, log, pi, log2
|
7 |
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
8 |
+
from packaging import version
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from einops import rearrange, reduce, repeat
|
13 |
+
from einops.layers.torch import Rearrange
|
14 |
+
from einops_exts import rearrange_many
|
15 |
+
from torch import Tensor, einsum
|
16 |
+
from torch.backends.cuda import sdp_kernel
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from dac.nn.layers import Snake1d
|
19 |
+
import pdb
|
20 |
+
"""
|
21 |
+
Utils
|
22 |
+
"""
|
23 |
+
|
24 |
+
|
25 |
+
class ConditionedSequential(nn.Module):
|
26 |
+
def __init__(self, *modules):
|
27 |
+
super().__init__()
|
28 |
+
self.module_list = nn.ModuleList(*modules)
|
29 |
+
|
30 |
+
def forward(self, x: Tensor, mapping: Optional[Tensor] = None):
|
31 |
+
for module in self.module_list:
|
32 |
+
x = module(x, mapping)
|
33 |
+
return x
|
34 |
+
|
35 |
+
T = TypeVar("T")
|
36 |
+
|
37 |
+
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d() if isfunction(d) else d
|
41 |
+
|
42 |
+
def exists(val: Optional[T]) -> T:
|
43 |
+
return val is not None
|
44 |
+
|
45 |
+
def closest_power_2(x: float) -> int:
|
46 |
+
exponent = log2(x)
|
47 |
+
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
48 |
+
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
49 |
+
return 2 ** int(exponent_closest)
|
50 |
+
|
51 |
+
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
52 |
+
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
53 |
+
for key in d.keys():
|
54 |
+
no_prefix = int(not key.startswith(prefix))
|
55 |
+
return_dicts[no_prefix][key] = d[key]
|
56 |
+
return return_dicts
|
57 |
+
|
58 |
+
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
59 |
+
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
60 |
+
if keep_prefix:
|
61 |
+
return kwargs_with_prefix, kwargs
|
62 |
+
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
63 |
+
return kwargs_no_prefix, kwargs
|
64 |
+
|
65 |
+
"""
|
66 |
+
Convolutional Blocks
|
67 |
+
"""
|
68 |
+
import typing as tp
|
69 |
+
|
70 |
+
# Copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conv.py under MIT License
|
71 |
+
# License available in LICENSES/LICENSE_META.txt
|
72 |
+
|
73 |
+
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
74 |
+
padding_total: int = 0) -> int:
|
75 |
+
"""See `pad_for_conv1d`."""
|
76 |
+
length = x.shape[-1]
|
77 |
+
n_frames = (length - kernel_size + padding_total) / stride + 1
|
78 |
+
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
79 |
+
return ideal_length - length
|
80 |
+
|
81 |
+
|
82 |
+
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
83 |
+
"""Pad for a convolution to make sure that the last window is full.
|
84 |
+
Extra padding is added at the end. This is required to ensure that we can rebuild
|
85 |
+
an output of the same length, as otherwise, even with padding, some time steps
|
86 |
+
might get removed.
|
87 |
+
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
88 |
+
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
89 |
+
1 2 3 # (output frames of a convolution, last 0 is never used)
|
90 |
+
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
91 |
+
1 2 3 4 # once you removed padding, we are missing one time step !
|
92 |
+
"""
|
93 |
+
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
94 |
+
return F.pad(x, (0, extra_padding))
|
95 |
+
|
96 |
+
|
97 |
+
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
98 |
+
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
99 |
+
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
100 |
+
"""
|
101 |
+
length = x.shape[-1]
|
102 |
+
padding_left, padding_right = paddings
|
103 |
+
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
104 |
+
if mode == 'reflect':
|
105 |
+
max_pad = max(padding_left, padding_right)
|
106 |
+
extra_pad = 0
|
107 |
+
if length <= max_pad:
|
108 |
+
extra_pad = max_pad - length + 1
|
109 |
+
x = F.pad(x, (0, extra_pad))
|
110 |
+
padded = F.pad(x, paddings, mode, value)
|
111 |
+
end = padded.shape[-1] - extra_pad
|
112 |
+
return padded[..., :end]
|
113 |
+
else:
|
114 |
+
return F.pad(x, paddings, mode, value)
|
115 |
+
|
116 |
+
|
117 |
+
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
118 |
+
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
119 |
+
padding_left, padding_right = paddings
|
120 |
+
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
121 |
+
assert (padding_left + padding_right) <= x.shape[-1]
|
122 |
+
end = x.shape[-1] - padding_right
|
123 |
+
return x[..., padding_left: end]
|
124 |
+
|
125 |
+
|
126 |
+
class Conv1d(nn.Conv1d):
|
127 |
+
def __init__(self, *args, **kwargs):
|
128 |
+
super().__init__(*args, **kwargs)
|
129 |
+
|
130 |
+
def forward(self, x: Tensor, causal=False) -> Tensor:
|
131 |
+
kernel_size = self.kernel_size[0]
|
132 |
+
stride = self.stride[0]
|
133 |
+
dilation = self.dilation[0]
|
134 |
+
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
135 |
+
padding_total = kernel_size - stride
|
136 |
+
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
137 |
+
if causal:
|
138 |
+
# Left padding for causal
|
139 |
+
x = pad1d(x, (padding_total, extra_padding))
|
140 |
+
else:
|
141 |
+
# Asymmetric padding required for odd strides
|
142 |
+
padding_right = padding_total // 2
|
143 |
+
padding_left = padding_total - padding_right
|
144 |
+
x = pad1d(x, (padding_left, padding_right + extra_padding))
|
145 |
+
return super().forward(x)
|
146 |
+
|
147 |
+
class ConvTranspose1d(nn.ConvTranspose1d):
|
148 |
+
def __init__(self, *args, **kwargs):
|
149 |
+
super().__init__(*args, **kwargs)
|
150 |
+
|
151 |
+
def forward(self, x: Tensor, causal=False) -> Tensor:
|
152 |
+
kernel_size = self.kernel_size[0]
|
153 |
+
stride = self.stride[0]
|
154 |
+
padding_total = kernel_size - stride
|
155 |
+
|
156 |
+
y = super().forward(x)
|
157 |
+
|
158 |
+
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
159 |
+
# removed at the very end, when keeping only the right length for the output,
|
160 |
+
# as removing it here would require also passing the length at the matching layer
|
161 |
+
# in the encoder.
|
162 |
+
if causal:
|
163 |
+
padding_right = ceil(padding_total)
|
164 |
+
padding_left = padding_total - padding_right
|
165 |
+
y = unpad1d(y, (padding_left, padding_right))
|
166 |
+
else:
|
167 |
+
# Asymmetric padding required for odd strides
|
168 |
+
padding_right = padding_total // 2
|
169 |
+
padding_left = padding_total - padding_right
|
170 |
+
y = unpad1d(y, (padding_left, padding_right))
|
171 |
+
return y
|
172 |
+
|
173 |
+
|
174 |
+
def Downsample1d(
|
175 |
+
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
176 |
+
) -> nn.Module:
|
177 |
+
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
178 |
+
|
179 |
+
return Conv1d(
|
180 |
+
in_channels=in_channels,
|
181 |
+
out_channels=out_channels,
|
182 |
+
kernel_size=factor * kernel_multiplier + 1,
|
183 |
+
stride=factor
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
def Upsample1d(
|
188 |
+
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
189 |
+
) -> nn.Module:
|
190 |
+
|
191 |
+
if factor == 1:
|
192 |
+
return Conv1d(
|
193 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3
|
194 |
+
)
|
195 |
+
|
196 |
+
if use_nearest:
|
197 |
+
return nn.Sequential(
|
198 |
+
nn.Upsample(scale_factor=factor, mode="nearest"),
|
199 |
+
Conv1d(
|
200 |
+
in_channels=in_channels,
|
201 |
+
out_channels=out_channels,
|
202 |
+
kernel_size=3
|
203 |
+
),
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
return ConvTranspose1d(
|
207 |
+
in_channels=in_channels,
|
208 |
+
out_channels=out_channels,
|
209 |
+
kernel_size=factor * 2,
|
210 |
+
stride=factor
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
class ConvBlock1d(nn.Module):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
in_channels: int,
|
218 |
+
out_channels: int,
|
219 |
+
*,
|
220 |
+
kernel_size: int = 3,
|
221 |
+
stride: int = 1,
|
222 |
+
dilation: int = 1,
|
223 |
+
num_groups: int = 8,
|
224 |
+
use_norm: bool = True,
|
225 |
+
use_snake: bool = False
|
226 |
+
) -> None:
|
227 |
+
super().__init__()
|
228 |
+
|
229 |
+
self.groupnorm = (
|
230 |
+
nn.GroupNorm(num_groups=num_groups, num_channels=in_channels)
|
231 |
+
if use_norm
|
232 |
+
else nn.Identity()
|
233 |
+
)
|
234 |
+
|
235 |
+
if use_snake:
|
236 |
+
self.activation = Snake1d(in_channels)
|
237 |
+
else:
|
238 |
+
self.activation = nn.SiLU()
|
239 |
+
|
240 |
+
self.project = Conv1d(
|
241 |
+
in_channels=in_channels,
|
242 |
+
out_channels=out_channels,
|
243 |
+
kernel_size=kernel_size,
|
244 |
+
stride=stride,
|
245 |
+
dilation=dilation,
|
246 |
+
)
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self, x: Tensor, scale_shift: Optional[Tuple[Tensor, Tensor]] = None, causal=False
|
250 |
+
) -> Tensor:
|
251 |
+
x = self.groupnorm(x)
|
252 |
+
if exists(scale_shift):
|
253 |
+
scale, shift = scale_shift
|
254 |
+
x = x * (scale + 1) + shift
|
255 |
+
x = self.activation(x)
|
256 |
+
return self.project(x, causal=causal)
|
257 |
+
|
258 |
+
|
259 |
+
class MappingToScaleShift(nn.Module):
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
features: int,
|
263 |
+
channels: int,
|
264 |
+
):
|
265 |
+
super().__init__()
|
266 |
+
|
267 |
+
self.to_scale_shift = nn.Sequential(
|
268 |
+
nn.SiLU(),
|
269 |
+
nn.Linear(in_features=features, out_features=channels * 2),
|
270 |
+
)
|
271 |
+
|
272 |
+
def forward(self, mapping: Tensor) -> Tuple[Tensor, Tensor]:
|
273 |
+
scale_shift = self.to_scale_shift(mapping)
|
274 |
+
scale_shift = rearrange(scale_shift, "b c -> b c 1")
|
275 |
+
scale, shift = scale_shift.chunk(2, dim=1)
|
276 |
+
return scale, shift
|
277 |
+
|
278 |
+
|
279 |
+
class ResnetBlock1d(nn.Module):
|
280 |
+
def __init__(
|
281 |
+
self,
|
282 |
+
in_channels: int,
|
283 |
+
out_channels: int,
|
284 |
+
*,
|
285 |
+
kernel_size: int = 3,
|
286 |
+
stride: int = 1,
|
287 |
+
dilation: int = 1,
|
288 |
+
use_norm: bool = True,
|
289 |
+
use_snake: bool = False,
|
290 |
+
num_groups: int = 8,
|
291 |
+
context_mapping_features: Optional[int] = None,
|
292 |
+
) -> None:
|
293 |
+
super().__init__()
|
294 |
+
|
295 |
+
self.use_mapping = exists(context_mapping_features)
|
296 |
+
|
297 |
+
self.block1 = ConvBlock1d(
|
298 |
+
in_channels=in_channels,
|
299 |
+
out_channels=out_channels,
|
300 |
+
kernel_size=kernel_size,
|
301 |
+
stride=stride,
|
302 |
+
dilation=dilation,
|
303 |
+
use_norm=use_norm,
|
304 |
+
num_groups=num_groups,
|
305 |
+
use_snake=use_snake
|
306 |
+
)
|
307 |
+
|
308 |
+
if self.use_mapping:
|
309 |
+
assert exists(context_mapping_features)
|
310 |
+
self.to_scale_shift = MappingToScaleShift(
|
311 |
+
features=context_mapping_features, channels=out_channels
|
312 |
+
)
|
313 |
+
|
314 |
+
self.block2 = ConvBlock1d(
|
315 |
+
in_channels=out_channels,
|
316 |
+
out_channels=out_channels,
|
317 |
+
use_norm=use_norm,
|
318 |
+
num_groups=num_groups,
|
319 |
+
use_snake=use_snake
|
320 |
+
)
|
321 |
+
|
322 |
+
self.to_out = (
|
323 |
+
Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
|
324 |
+
if in_channels != out_channels
|
325 |
+
else nn.Identity()
|
326 |
+
)
|
327 |
+
|
328 |
+
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
329 |
+
assert_message = "context mapping required if context_mapping_features > 0"
|
330 |
+
assert not (self.use_mapping ^ exists(mapping)), assert_message
|
331 |
+
|
332 |
+
h = self.block1(x, causal=causal)
|
333 |
+
|
334 |
+
scale_shift = None
|
335 |
+
if self.use_mapping:
|
336 |
+
scale_shift = self.to_scale_shift(mapping)
|
337 |
+
|
338 |
+
h = self.block2(h, scale_shift=scale_shift, causal=causal)
|
339 |
+
|
340 |
+
return h + self.to_out(x)
|
341 |
+
|
342 |
+
|
343 |
+
class Patcher(nn.Module):
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
in_channels: int,
|
347 |
+
out_channels: int,
|
348 |
+
patch_size: int,
|
349 |
+
context_mapping_features: Optional[int] = None,
|
350 |
+
use_snake: bool = False,
|
351 |
+
):
|
352 |
+
super().__init__()
|
353 |
+
assert_message = f"out_channels must be divisible by patch_size ({patch_size})"
|
354 |
+
assert out_channels % patch_size == 0, assert_message
|
355 |
+
self.patch_size = patch_size
|
356 |
+
|
357 |
+
self.block = ResnetBlock1d(
|
358 |
+
in_channels=in_channels,
|
359 |
+
out_channels=out_channels // patch_size,
|
360 |
+
num_groups=1,
|
361 |
+
context_mapping_features=context_mapping_features,
|
362 |
+
use_snake=use_snake
|
363 |
+
)
|
364 |
+
|
365 |
+
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
366 |
+
x = self.block(x, mapping, causal=causal)
|
367 |
+
x = rearrange(x, "b c (l p) -> b (c p) l", p=self.patch_size)
|
368 |
+
return x
|
369 |
+
|
370 |
+
|
371 |
+
class Unpatcher(nn.Module):
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
in_channels: int,
|
375 |
+
out_channels: int,
|
376 |
+
patch_size: int,
|
377 |
+
context_mapping_features: Optional[int] = None,
|
378 |
+
use_snake: bool = False
|
379 |
+
):
|
380 |
+
super().__init__()
|
381 |
+
assert_message = f"in_channels must be divisible by patch_size ({patch_size})"
|
382 |
+
assert in_channels % patch_size == 0, assert_message
|
383 |
+
self.patch_size = patch_size
|
384 |
+
|
385 |
+
self.block = ResnetBlock1d(
|
386 |
+
in_channels=in_channels // patch_size,
|
387 |
+
out_channels=out_channels,
|
388 |
+
num_groups=1,
|
389 |
+
context_mapping_features=context_mapping_features,
|
390 |
+
use_snake=use_snake
|
391 |
+
)
|
392 |
+
|
393 |
+
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
394 |
+
x = rearrange(x, " b (c p) l -> b c (l p) ", p=self.patch_size)
|
395 |
+
x = self.block(x, mapping, causal=causal)
|
396 |
+
return x
|
397 |
+
|
398 |
+
|
399 |
+
"""
|
400 |
+
Attention Components
|
401 |
+
"""
|
402 |
+
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
403 |
+
mid_features = features * multiplier
|
404 |
+
return nn.Sequential(
|
405 |
+
nn.Linear(in_features=features, out_features=mid_features),
|
406 |
+
nn.GELU(),
|
407 |
+
nn.Linear(in_features=mid_features, out_features=features),
|
408 |
+
)
|
409 |
+
|
410 |
+
def add_mask(sim: Tensor, mask: Tensor) -> Tensor:
|
411 |
+
b, ndim = sim.shape[0], mask.ndim
|
412 |
+
if ndim == 3:
|
413 |
+
mask = rearrange(mask, "b n m -> b 1 n m")
|
414 |
+
if ndim == 2:
|
415 |
+
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
416 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
417 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
418 |
+
return sim
|
419 |
+
|
420 |
+
def causal_mask(q: Tensor, k: Tensor) -> Tensor:
|
421 |
+
b, i, j, device = q.shape[0], q.shape[-2], k.shape[-2], q.device
|
422 |
+
mask = ~torch.ones((i, j), dtype=torch.bool, device=device).triu(j - i + 1)
|
423 |
+
mask = repeat(mask, "n m -> b n m", b=b)
|
424 |
+
return mask
|
425 |
+
|
426 |
+
class AttentionBase(nn.Module):
|
427 |
+
def __init__(
|
428 |
+
self,
|
429 |
+
features: int,
|
430 |
+
*,
|
431 |
+
head_features: int,
|
432 |
+
num_heads: int,
|
433 |
+
out_features: Optional[int] = None,
|
434 |
+
):
|
435 |
+
super().__init__()
|
436 |
+
self.scale = head_features**-0.5
|
437 |
+
self.num_heads = num_heads
|
438 |
+
mid_features = head_features * num_heads
|
439 |
+
out_features = default(out_features, features)
|
440 |
+
|
441 |
+
self.to_out = nn.Linear(
|
442 |
+
in_features=mid_features, out_features=out_features
|
443 |
+
)
|
444 |
+
|
445 |
+
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
446 |
+
|
447 |
+
if not self.use_flash:
|
448 |
+
return
|
449 |
+
|
450 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
451 |
+
|
452 |
+
if device_properties.major == 8 and device_properties.minor == 0:
|
453 |
+
# Use flash attention for A100 GPUs
|
454 |
+
self.sdp_kernel_config = (True, False, False)
|
455 |
+
else:
|
456 |
+
# Don't use flash attention for other GPUs
|
457 |
+
self.sdp_kernel_config = (False, True, True)
|
458 |
+
|
459 |
+
def forward(
|
460 |
+
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, is_causal: bool = False
|
461 |
+
) -> Tensor:
|
462 |
+
# Split heads
|
463 |
+
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
464 |
+
|
465 |
+
if not self.use_flash:
|
466 |
+
if is_causal and not mask:
|
467 |
+
# Mask out future tokens for causal attention
|
468 |
+
mask = causal_mask(q, k)
|
469 |
+
|
470 |
+
# Compute similarity matrix and add eventual mask
|
471 |
+
sim = einsum("... n d, ... m d -> ... n m", q, k) * self.scale
|
472 |
+
sim = add_mask(sim, mask) if exists(mask) else sim
|
473 |
+
|
474 |
+
# Get attention matrix with softmax
|
475 |
+
attn = sim.softmax(dim=-1, dtype=torch.float32)
|
476 |
+
|
477 |
+
# Compute values
|
478 |
+
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
479 |
+
else:
|
480 |
+
with sdp_kernel(*self.sdp_kernel_config):
|
481 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, is_causal=is_causal)
|
482 |
+
|
483 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
484 |
+
return self.to_out(out)
|
485 |
+
|
486 |
+
class Attention(nn.Module):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
features: int,
|
490 |
+
*,
|
491 |
+
head_features: int,
|
492 |
+
num_heads: int,
|
493 |
+
out_features: Optional[int] = None,
|
494 |
+
context_features: Optional[int] = None,
|
495 |
+
causal: bool = False,
|
496 |
+
):
|
497 |
+
super().__init__()
|
498 |
+
self.context_features = context_features
|
499 |
+
self.causal = causal
|
500 |
+
mid_features = head_features * num_heads
|
501 |
+
context_features = default(context_features, features)
|
502 |
+
|
503 |
+
self.norm = nn.LayerNorm(features)
|
504 |
+
self.norm_context = nn.LayerNorm(context_features)
|
505 |
+
self.to_q = nn.Linear(
|
506 |
+
in_features=features, out_features=mid_features, bias=False
|
507 |
+
)
|
508 |
+
self.to_kv = nn.Linear(
|
509 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
510 |
+
)
|
511 |
+
self.attention = AttentionBase(
|
512 |
+
features,
|
513 |
+
num_heads=num_heads,
|
514 |
+
head_features=head_features,
|
515 |
+
out_features=out_features,
|
516 |
+
)
|
517 |
+
|
518 |
+
def forward(
|
519 |
+
self,
|
520 |
+
x: Tensor, # [b, n, c]
|
521 |
+
context: Optional[Tensor] = None, # [b, m, d]
|
522 |
+
context_mask: Optional[Tensor] = None, # [b, m], false is masked,
|
523 |
+
causal: Optional[bool] = False,
|
524 |
+
) -> Tensor:
|
525 |
+
assert_message = "You must provide a context when using context_features"
|
526 |
+
assert not self.context_features or exists(context), assert_message
|
527 |
+
# Use context if provided
|
528 |
+
context = default(context, x)
|
529 |
+
# Normalize then compute q from input and k,v from context
|
530 |
+
x, context = self.norm(x), self.norm_context(context)
|
531 |
+
|
532 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
533 |
+
|
534 |
+
if exists(context_mask):
|
535 |
+
# Mask out cross-attention for padding tokens
|
536 |
+
mask = repeat(context_mask, "b m -> b m d", d=v.shape[-1])
|
537 |
+
k, v = k * mask, v * mask
|
538 |
+
|
539 |
+
# Compute and return attention
|
540 |
+
return self.attention(q, k, v, is_causal=self.causal or causal)
|
541 |
+
|
542 |
+
|
543 |
+
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
544 |
+
mid_features = features * multiplier
|
545 |
+
return nn.Sequential(
|
546 |
+
nn.Linear(in_features=features, out_features=mid_features),
|
547 |
+
nn.GELU(),
|
548 |
+
nn.Linear(in_features=mid_features, out_features=features),
|
549 |
+
)
|
550 |
+
|
551 |
+
"""
|
552 |
+
Transformer Blocks
|
553 |
+
"""
|
554 |
+
|
555 |
+
|
556 |
+
class TransformerBlock(nn.Module):
|
557 |
+
def __init__(
|
558 |
+
self,
|
559 |
+
features: int,
|
560 |
+
num_heads: int,
|
561 |
+
head_features: int,
|
562 |
+
multiplier: int,
|
563 |
+
context_features: Optional[int] = None,
|
564 |
+
):
|
565 |
+
super().__init__()
|
566 |
+
|
567 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
568 |
+
|
569 |
+
self.attention = Attention(
|
570 |
+
features=features,
|
571 |
+
num_heads=num_heads,
|
572 |
+
head_features=head_features
|
573 |
+
)
|
574 |
+
|
575 |
+
if self.use_cross_attention:
|
576 |
+
self.cross_attention = Attention(
|
577 |
+
features=features,
|
578 |
+
num_heads=num_heads,
|
579 |
+
head_features=head_features,
|
580 |
+
context_features=context_features
|
581 |
+
)
|
582 |
+
|
583 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
584 |
+
|
585 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None, context_mask: Optional[Tensor] = None, causal: Optional[bool] = False) -> Tensor:
|
586 |
+
x = self.attention(x, causal=causal) + x
|
587 |
+
if self.use_cross_attention:
|
588 |
+
x = self.cross_attention(x, context=context, context_mask=context_mask) + x
|
589 |
+
x = self.feed_forward(x) + x
|
590 |
+
return x
|
591 |
+
|
592 |
+
|
593 |
+
"""
|
594 |
+
Transformers
|
595 |
+
"""
|
596 |
+
|
597 |
+
|
598 |
+
class Transformer1d(nn.Module):
|
599 |
+
def __init__(
|
600 |
+
self,
|
601 |
+
num_layers: int,
|
602 |
+
channels: int,
|
603 |
+
num_heads: int,
|
604 |
+
head_features: int,
|
605 |
+
multiplier: int,
|
606 |
+
context_features: Optional[int] = None,
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
|
610 |
+
self.to_in = nn.Sequential(
|
611 |
+
nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6, affine=True),
|
612 |
+
Conv1d(
|
613 |
+
in_channels=channels,
|
614 |
+
out_channels=channels,
|
615 |
+
kernel_size=1,
|
616 |
+
),
|
617 |
+
Rearrange("b c t -> b t c"),
|
618 |
+
)
|
619 |
+
|
620 |
+
self.blocks = nn.ModuleList(
|
621 |
+
[
|
622 |
+
TransformerBlock(
|
623 |
+
features=channels,
|
624 |
+
head_features=head_features,
|
625 |
+
num_heads=num_heads,
|
626 |
+
multiplier=multiplier,
|
627 |
+
context_features=context_features,
|
628 |
+
)
|
629 |
+
for i in range(num_layers)
|
630 |
+
]
|
631 |
+
)
|
632 |
+
|
633 |
+
self.to_out = nn.Sequential(
|
634 |
+
Rearrange("b t c -> b c t"),
|
635 |
+
Conv1d(
|
636 |
+
in_channels=channels,
|
637 |
+
out_channels=channels,
|
638 |
+
kernel_size=1,
|
639 |
+
),
|
640 |
+
)
|
641 |
+
|
642 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None, context_mask: Optional[Tensor] = None, causal=False) -> Tensor:
|
643 |
+
x = self.to_in(x)
|
644 |
+
for block in self.blocks:
|
645 |
+
x = block(x, context=context, context_mask=context_mask, causal=causal)
|
646 |
+
x = self.to_out(x)
|
647 |
+
return x
|
648 |
+
|
649 |
+
|
650 |
+
"""
|
651 |
+
Time Embeddings
|
652 |
+
"""
|
653 |
+
|
654 |
+
|
655 |
+
class SinusoidalEmbedding(nn.Module):
|
656 |
+
def __init__(self, dim: int):
|
657 |
+
super().__init__()
|
658 |
+
self.dim = dim
|
659 |
+
|
660 |
+
def forward(self, x: Tensor) -> Tensor:
|
661 |
+
device, half_dim = x.device, self.dim // 2
|
662 |
+
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
663 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
664 |
+
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
665 |
+
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
666 |
+
|
667 |
+
|
668 |
+
class LearnedPositionalEmbedding(nn.Module):
|
669 |
+
"""Used for continuous time"""
|
670 |
+
|
671 |
+
def __init__(self, dim: int):
|
672 |
+
super().__init__()
|
673 |
+
assert (dim % 2) == 0
|
674 |
+
half_dim = dim // 2
|
675 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
676 |
+
|
677 |
+
def forward(self, x: Tensor) -> Tensor:
|
678 |
+
x = rearrange(x, "b -> b 1")
|
679 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
680 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
681 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
682 |
+
return fouriered
|
683 |
+
|
684 |
+
|
685 |
+
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
686 |
+
return nn.Sequential(
|
687 |
+
LearnedPositionalEmbedding(dim),
|
688 |
+
nn.Linear(in_features=dim + 1, out_features=out_features),
|
689 |
+
)
|
690 |
+
|
691 |
+
|
692 |
+
"""
|
693 |
+
Encoder/Decoder Components
|
694 |
+
"""
|
695 |
+
|
696 |
+
|
697 |
+
class DownsampleBlock1d(nn.Module):
|
698 |
+
def __init__(
|
699 |
+
self,
|
700 |
+
in_channels: int,
|
701 |
+
out_channels: int,
|
702 |
+
*,
|
703 |
+
factor: int,
|
704 |
+
num_groups: int,
|
705 |
+
num_layers: int,
|
706 |
+
kernel_multiplier: int = 2,
|
707 |
+
use_pre_downsample: bool = True,
|
708 |
+
use_skip: bool = False,
|
709 |
+
use_snake: bool = False,
|
710 |
+
extract_channels: int = 0,
|
711 |
+
context_channels: int = 0,
|
712 |
+
num_transformer_blocks: int = 0,
|
713 |
+
attention_heads: Optional[int] = None,
|
714 |
+
attention_features: Optional[int] = None,
|
715 |
+
attention_multiplier: Optional[int] = None,
|
716 |
+
context_mapping_features: Optional[int] = None,
|
717 |
+
context_embedding_features: Optional[int] = None,
|
718 |
+
):
|
719 |
+
super().__init__()
|
720 |
+
self.use_pre_downsample = use_pre_downsample
|
721 |
+
self.use_skip = use_skip
|
722 |
+
self.use_transformer = num_transformer_blocks > 0
|
723 |
+
self.use_extract = extract_channels > 0
|
724 |
+
self.use_context = context_channels > 0
|
725 |
+
|
726 |
+
channels = out_channels if use_pre_downsample else in_channels
|
727 |
+
|
728 |
+
self.downsample = Downsample1d(
|
729 |
+
in_channels=in_channels,
|
730 |
+
out_channels=out_channels,
|
731 |
+
factor=factor,
|
732 |
+
kernel_multiplier=kernel_multiplier,
|
733 |
+
)
|
734 |
+
|
735 |
+
self.blocks = nn.ModuleList(
|
736 |
+
[
|
737 |
+
ResnetBlock1d(
|
738 |
+
in_channels=channels + context_channels if i == 0 else channels,
|
739 |
+
out_channels=channels,
|
740 |
+
num_groups=num_groups,
|
741 |
+
context_mapping_features=context_mapping_features,
|
742 |
+
use_snake=use_snake
|
743 |
+
)
|
744 |
+
for i in range(num_layers)
|
745 |
+
]
|
746 |
+
)
|
747 |
+
|
748 |
+
if self.use_transformer:
|
749 |
+
assert (
|
750 |
+
(exists(attention_heads) or exists(attention_features))
|
751 |
+
and exists(attention_multiplier)
|
752 |
+
)
|
753 |
+
|
754 |
+
if attention_features is None and attention_heads is not None:
|
755 |
+
attention_features = channels // attention_heads
|
756 |
+
|
757 |
+
if attention_heads is None and attention_features is not None:
|
758 |
+
attention_heads = channels // attention_features
|
759 |
+
|
760 |
+
self.transformer = Transformer1d(
|
761 |
+
num_layers=num_transformer_blocks,
|
762 |
+
channels=channels,
|
763 |
+
num_heads=attention_heads,
|
764 |
+
head_features=attention_features,
|
765 |
+
multiplier=attention_multiplier,
|
766 |
+
context_features=context_embedding_features
|
767 |
+
)
|
768 |
+
|
769 |
+
if self.use_extract:
|
770 |
+
num_extract_groups = min(num_groups, extract_channels)
|
771 |
+
self.to_extracted = ResnetBlock1d(
|
772 |
+
in_channels=out_channels,
|
773 |
+
out_channels=extract_channels,
|
774 |
+
num_groups=num_extract_groups,
|
775 |
+
use_snake=use_snake
|
776 |
+
)
|
777 |
+
|
778 |
+
def forward(
|
779 |
+
self,
|
780 |
+
x: Tensor,
|
781 |
+
*,
|
782 |
+
mapping: Optional[Tensor] = None,
|
783 |
+
channels: Optional[Tensor] = None,
|
784 |
+
embedding: Optional[Tensor] = None,
|
785 |
+
embedding_mask: Optional[Tensor] = None,
|
786 |
+
causal: Optional[bool] = False
|
787 |
+
) -> Union[Tuple[Tensor, List[Tensor]], Tensor]:
|
788 |
+
|
789 |
+
if self.use_pre_downsample:
|
790 |
+
x = self.downsample(x)
|
791 |
+
|
792 |
+
if self.use_context and exists(channels):
|
793 |
+
x = torch.cat([x, channels], dim=1)
|
794 |
+
|
795 |
+
skips = []
|
796 |
+
for block in self.blocks:
|
797 |
+
x = block(x, mapping=mapping, causal=causal)
|
798 |
+
skips += [x] if self.use_skip else []
|
799 |
+
|
800 |
+
if self.use_transformer:
|
801 |
+
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
802 |
+
skips += [x] if self.use_skip else []
|
803 |
+
|
804 |
+
if not self.use_pre_downsample:
|
805 |
+
x = self.downsample(x)
|
806 |
+
|
807 |
+
if self.use_extract:
|
808 |
+
extracted = self.to_extracted(x)
|
809 |
+
return x, extracted
|
810 |
+
|
811 |
+
return (x, skips) if self.use_skip else x
|
812 |
+
|
813 |
+
|
814 |
+
class UpsampleBlock1d(nn.Module):
|
815 |
+
def __init__(
|
816 |
+
self,
|
817 |
+
in_channels: int,
|
818 |
+
out_channels: int,
|
819 |
+
*,
|
820 |
+
factor: int,
|
821 |
+
num_layers: int,
|
822 |
+
num_groups: int,
|
823 |
+
use_nearest: bool = False,
|
824 |
+
use_pre_upsample: bool = False,
|
825 |
+
use_skip: bool = False,
|
826 |
+
use_snake: bool = False,
|
827 |
+
skip_channels: int = 0,
|
828 |
+
use_skip_scale: bool = False,
|
829 |
+
extract_channels: int = 0,
|
830 |
+
num_transformer_blocks: int = 0,
|
831 |
+
attention_heads: Optional[int] = None,
|
832 |
+
attention_features: Optional[int] = None,
|
833 |
+
attention_multiplier: Optional[int] = None,
|
834 |
+
context_mapping_features: Optional[int] = None,
|
835 |
+
context_embedding_features: Optional[int] = None,
|
836 |
+
):
|
837 |
+
super().__init__()
|
838 |
+
|
839 |
+
self.use_extract = extract_channels > 0
|
840 |
+
self.use_pre_upsample = use_pre_upsample
|
841 |
+
self.use_transformer = num_transformer_blocks > 0
|
842 |
+
self.use_skip = use_skip
|
843 |
+
self.skip_scale = 2 ** -0.5 if use_skip_scale else 1.0
|
844 |
+
|
845 |
+
channels = out_channels if use_pre_upsample else in_channels
|
846 |
+
|
847 |
+
self.blocks = nn.ModuleList(
|
848 |
+
[
|
849 |
+
ResnetBlock1d(
|
850 |
+
in_channels=channels + skip_channels,
|
851 |
+
out_channels=channels,
|
852 |
+
num_groups=num_groups,
|
853 |
+
context_mapping_features=context_mapping_features,
|
854 |
+
use_snake=use_snake
|
855 |
+
)
|
856 |
+
for _ in range(num_layers)
|
857 |
+
]
|
858 |
+
)
|
859 |
+
|
860 |
+
if self.use_transformer:
|
861 |
+
assert (
|
862 |
+
(exists(attention_heads) or exists(attention_features))
|
863 |
+
and exists(attention_multiplier)
|
864 |
+
)
|
865 |
+
|
866 |
+
if attention_features is None and attention_heads is not None:
|
867 |
+
attention_features = channels // attention_heads
|
868 |
+
|
869 |
+
if attention_heads is None and attention_features is not None:
|
870 |
+
attention_heads = channels // attention_features
|
871 |
+
|
872 |
+
self.transformer = Transformer1d(
|
873 |
+
num_layers=num_transformer_blocks,
|
874 |
+
channels=channels,
|
875 |
+
num_heads=attention_heads,
|
876 |
+
head_features=attention_features,
|
877 |
+
multiplier=attention_multiplier,
|
878 |
+
context_features=context_embedding_features,
|
879 |
+
)
|
880 |
+
|
881 |
+
self.upsample = Upsample1d(
|
882 |
+
in_channels=in_channels,
|
883 |
+
out_channels=out_channels,
|
884 |
+
factor=factor,
|
885 |
+
use_nearest=use_nearest,
|
886 |
+
)
|
887 |
+
|
888 |
+
if self.use_extract:
|
889 |
+
num_extract_groups = min(num_groups, extract_channels)
|
890 |
+
self.to_extracted = ResnetBlock1d(
|
891 |
+
in_channels=out_channels,
|
892 |
+
out_channels=extract_channels,
|
893 |
+
num_groups=num_extract_groups,
|
894 |
+
use_snake=use_snake
|
895 |
+
)
|
896 |
+
|
897 |
+
def add_skip(self, x: Tensor, skip: Tensor) -> Tensor:
|
898 |
+
return torch.cat([x, skip * self.skip_scale], dim=1)
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
x: Tensor,
|
903 |
+
*,
|
904 |
+
skips: Optional[List[Tensor]] = None,
|
905 |
+
mapping: Optional[Tensor] = None,
|
906 |
+
embedding: Optional[Tensor] = None,
|
907 |
+
embedding_mask: Optional[Tensor] = None,
|
908 |
+
causal: Optional[bool] = False
|
909 |
+
) -> Union[Tuple[Tensor, Tensor], Tensor]:
|
910 |
+
|
911 |
+
if self.use_pre_upsample:
|
912 |
+
x = self.upsample(x)
|
913 |
+
|
914 |
+
for block in self.blocks:
|
915 |
+
x = self.add_skip(x, skip=skips.pop()) if exists(skips) else x
|
916 |
+
x = block(x, mapping=mapping, causal=causal)
|
917 |
+
|
918 |
+
if self.use_transformer:
|
919 |
+
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
920 |
+
|
921 |
+
if not self.use_pre_upsample:
|
922 |
+
x = self.upsample(x)
|
923 |
+
|
924 |
+
if self.use_extract:
|
925 |
+
extracted = self.to_extracted(x)
|
926 |
+
return x, extracted
|
927 |
+
|
928 |
+
return x
|
929 |
+
|
930 |
+
|
931 |
+
class BottleneckBlock1d(nn.Module):
|
932 |
+
def __init__(
|
933 |
+
self,
|
934 |
+
channels: int,
|
935 |
+
*,
|
936 |
+
num_groups: int,
|
937 |
+
num_transformer_blocks: int = 0,
|
938 |
+
attention_heads: Optional[int] = None,
|
939 |
+
attention_features: Optional[int] = None,
|
940 |
+
attention_multiplier: Optional[int] = None,
|
941 |
+
context_mapping_features: Optional[int] = None,
|
942 |
+
context_embedding_features: Optional[int] = None,
|
943 |
+
use_snake: bool = False,
|
944 |
+
):
|
945 |
+
super().__init__()
|
946 |
+
self.use_transformer = num_transformer_blocks > 0
|
947 |
+
|
948 |
+
self.pre_block = ResnetBlock1d(
|
949 |
+
in_channels=channels,
|
950 |
+
out_channels=channels,
|
951 |
+
num_groups=num_groups,
|
952 |
+
context_mapping_features=context_mapping_features,
|
953 |
+
use_snake=use_snake
|
954 |
+
)
|
955 |
+
|
956 |
+
if self.use_transformer:
|
957 |
+
assert (
|
958 |
+
(exists(attention_heads) or exists(attention_features))
|
959 |
+
and exists(attention_multiplier)
|
960 |
+
)
|
961 |
+
|
962 |
+
if attention_features is None and attention_heads is not None:
|
963 |
+
attention_features = channels // attention_heads
|
964 |
+
|
965 |
+
if attention_heads is None and attention_features is not None:
|
966 |
+
attention_heads = channels // attention_features
|
967 |
+
|
968 |
+
self.transformer = Transformer1d(
|
969 |
+
num_layers=num_transformer_blocks,
|
970 |
+
channels=channels,
|
971 |
+
num_heads=attention_heads,
|
972 |
+
head_features=attention_features,
|
973 |
+
multiplier=attention_multiplier,
|
974 |
+
context_features=context_embedding_features,
|
975 |
+
)
|
976 |
+
|
977 |
+
self.post_block = ResnetBlock1d(
|
978 |
+
in_channels=channels,
|
979 |
+
out_channels=channels,
|
980 |
+
num_groups=num_groups,
|
981 |
+
context_mapping_features=context_mapping_features,
|
982 |
+
use_snake=use_snake
|
983 |
+
)
|
984 |
+
|
985 |
+
def forward(
|
986 |
+
self,
|
987 |
+
x: Tensor,
|
988 |
+
*,
|
989 |
+
mapping: Optional[Tensor] = None,
|
990 |
+
embedding: Optional[Tensor] = None,
|
991 |
+
embedding_mask: Optional[Tensor] = None,
|
992 |
+
causal: Optional[bool] = False
|
993 |
+
) -> Tensor:
|
994 |
+
x = self.pre_block(x, mapping=mapping, causal=causal)
|
995 |
+
if self.use_transformer:
|
996 |
+
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
997 |
+
x = self.post_block(x, mapping=mapping, causal=causal)
|
998 |
+
return x
|
999 |
+
|
1000 |
+
|
1001 |
+
"""
|
1002 |
+
UNet
|
1003 |
+
"""
|
1004 |
+
|
1005 |
+
|
1006 |
+
class UNet1d(nn.Module):
|
1007 |
+
def __init__(
|
1008 |
+
self,
|
1009 |
+
in_channels: int,
|
1010 |
+
channels: int,
|
1011 |
+
multipliers: Sequence[int],
|
1012 |
+
factors: Sequence[int],
|
1013 |
+
num_blocks: Sequence[int],
|
1014 |
+
attentions: Sequence[int],
|
1015 |
+
patch_size: int = 1,
|
1016 |
+
resnet_groups: int = 8,
|
1017 |
+
use_context_time: bool = True,
|
1018 |
+
kernel_multiplier_downsample: int = 2,
|
1019 |
+
use_nearest_upsample: bool = False,
|
1020 |
+
use_skip_scale: bool = True,
|
1021 |
+
use_snake: bool = False,
|
1022 |
+
use_stft: bool = False,
|
1023 |
+
use_stft_context: bool = False,
|
1024 |
+
out_channels: Optional[int] = None,
|
1025 |
+
context_features: Optional[int] = None,
|
1026 |
+
context_features_multiplier: int = 4,
|
1027 |
+
context_channels: Optional[Sequence[int]] = None,
|
1028 |
+
context_embedding_features: Optional[int] = None,
|
1029 |
+
**kwargs,
|
1030 |
+
):
|
1031 |
+
super().__init__()
|
1032 |
+
out_channels = default(out_channels, in_channels)
|
1033 |
+
context_channels = list(default(context_channels, []))
|
1034 |
+
num_layers = len(multipliers) - 1
|
1035 |
+
use_context_features = exists(context_features)
|
1036 |
+
use_context_channels = len(context_channels) > 0
|
1037 |
+
context_mapping_features = None
|
1038 |
+
|
1039 |
+
attention_kwargs, kwargs = groupby("attention_", kwargs, keep_prefix=True)
|
1040 |
+
|
1041 |
+
self.num_layers = num_layers
|
1042 |
+
self.use_context_time = use_context_time
|
1043 |
+
self.use_context_features = use_context_features
|
1044 |
+
self.use_context_channels = use_context_channels
|
1045 |
+
self.use_stft = use_stft
|
1046 |
+
self.use_stft_context = use_stft_context
|
1047 |
+
|
1048 |
+
self.context_features = context_features
|
1049 |
+
context_channels_pad_length = num_layers + 1 - len(context_channels)
|
1050 |
+
context_channels = context_channels + [0] * context_channels_pad_length
|
1051 |
+
self.context_channels = context_channels
|
1052 |
+
self.context_embedding_features = context_embedding_features
|
1053 |
+
|
1054 |
+
if use_context_channels:
|
1055 |
+
has_context = [c > 0 for c in context_channels]
|
1056 |
+
self.has_context = has_context
|
1057 |
+
self.channels_ids = [sum(has_context[:i]) for i in range(len(has_context))]
|
1058 |
+
|
1059 |
+
assert (
|
1060 |
+
len(factors) == num_layers
|
1061 |
+
and len(attentions) >= num_layers
|
1062 |
+
and len(num_blocks) == num_layers
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if use_context_time or use_context_features:
|
1066 |
+
context_mapping_features = channels * context_features_multiplier
|
1067 |
+
|
1068 |
+
self.to_mapping = nn.Sequential(
|
1069 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
1070 |
+
nn.GELU(),
|
1071 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
1072 |
+
nn.GELU(),
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
if use_context_time:
|
1076 |
+
assert exists(context_mapping_features)
|
1077 |
+
self.to_time = nn.Sequential(
|
1078 |
+
TimePositionalEmbedding(
|
1079 |
+
dim=channels, out_features=context_mapping_features
|
1080 |
+
),
|
1081 |
+
nn.GELU(),
|
1082 |
+
)
|
1083 |
+
|
1084 |
+
if use_context_features:
|
1085 |
+
assert exists(context_features) and exists(context_mapping_features)
|
1086 |
+
self.to_features = nn.Sequential(
|
1087 |
+
nn.Linear(
|
1088 |
+
in_features=context_features, out_features=context_mapping_features
|
1089 |
+
),
|
1090 |
+
nn.GELU(),
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
if use_stft:
|
1094 |
+
stft_kwargs, kwargs = groupby("stft_", kwargs)
|
1095 |
+
assert "num_fft" in stft_kwargs, "stft_num_fft required if use_stft=True"
|
1096 |
+
stft_channels = (stft_kwargs["num_fft"] // 2 + 1) * 2
|
1097 |
+
in_channels *= stft_channels
|
1098 |
+
out_channels *= stft_channels
|
1099 |
+
context_channels[0] *= stft_channels if use_stft_context else 1
|
1100 |
+
assert exists(in_channels) and exists(out_channels)
|
1101 |
+
self.stft = STFT(**stft_kwargs)
|
1102 |
+
|
1103 |
+
assert not kwargs, f"Unknown arguments: {', '.join(list(kwargs.keys()))}"
|
1104 |
+
|
1105 |
+
self.to_in = Patcher(
|
1106 |
+
in_channels=in_channels + context_channels[0],
|
1107 |
+
out_channels=channels * multipliers[0],
|
1108 |
+
patch_size=patch_size,
|
1109 |
+
context_mapping_features=context_mapping_features,
|
1110 |
+
use_snake=use_snake
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
self.downsamples = nn.ModuleList(
|
1114 |
+
[
|
1115 |
+
DownsampleBlock1d(
|
1116 |
+
in_channels=channels * multipliers[i],
|
1117 |
+
out_channels=channels * multipliers[i + 1],
|
1118 |
+
context_mapping_features=context_mapping_features,
|
1119 |
+
context_channels=context_channels[i + 1],
|
1120 |
+
context_embedding_features=context_embedding_features,
|
1121 |
+
num_layers=num_blocks[i],
|
1122 |
+
factor=factors[i],
|
1123 |
+
kernel_multiplier=kernel_multiplier_downsample,
|
1124 |
+
num_groups=resnet_groups,
|
1125 |
+
use_pre_downsample=True,
|
1126 |
+
use_skip=True,
|
1127 |
+
use_snake=use_snake,
|
1128 |
+
num_transformer_blocks=attentions[i],
|
1129 |
+
**attention_kwargs,
|
1130 |
+
)
|
1131 |
+
for i in range(num_layers)
|
1132 |
+
]
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
self.bottleneck = BottleneckBlock1d(
|
1136 |
+
channels=channels * multipliers[-1],
|
1137 |
+
context_mapping_features=context_mapping_features,
|
1138 |
+
context_embedding_features=context_embedding_features,
|
1139 |
+
num_groups=resnet_groups,
|
1140 |
+
num_transformer_blocks=attentions[-1],
|
1141 |
+
use_snake=use_snake,
|
1142 |
+
**attention_kwargs,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
self.upsamples = nn.ModuleList(
|
1146 |
+
[
|
1147 |
+
UpsampleBlock1d(
|
1148 |
+
in_channels=channels * multipliers[i + 1],
|
1149 |
+
out_channels=channels * multipliers[i],
|
1150 |
+
context_mapping_features=context_mapping_features,
|
1151 |
+
context_embedding_features=context_embedding_features,
|
1152 |
+
num_layers=num_blocks[i] + (1 if attentions[i] else 0),
|
1153 |
+
factor=factors[i],
|
1154 |
+
use_nearest=use_nearest_upsample,
|
1155 |
+
num_groups=resnet_groups,
|
1156 |
+
use_skip_scale=use_skip_scale,
|
1157 |
+
use_pre_upsample=False,
|
1158 |
+
use_skip=True,
|
1159 |
+
use_snake=use_snake,
|
1160 |
+
skip_channels=channels * multipliers[i + 1],
|
1161 |
+
num_transformer_blocks=attentions[i],
|
1162 |
+
**attention_kwargs,
|
1163 |
+
)
|
1164 |
+
for i in reversed(range(num_layers))
|
1165 |
+
]
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
self.to_out = Unpatcher(
|
1169 |
+
in_channels=channels * multipliers[0],
|
1170 |
+
out_channels=out_channels,
|
1171 |
+
patch_size=patch_size,
|
1172 |
+
context_mapping_features=context_mapping_features,
|
1173 |
+
use_snake=use_snake
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
def get_channels(
|
1177 |
+
self, channels_list: Optional[Sequence[Tensor]] = None, layer: int = 0
|
1178 |
+
) -> Optional[Tensor]:
|
1179 |
+
"""Gets context channels at `layer` and checks that shape is correct"""
|
1180 |
+
use_context_channels = self.use_context_channels and self.has_context[layer]
|
1181 |
+
if not use_context_channels:
|
1182 |
+
return None
|
1183 |
+
assert exists(channels_list), "Missing context"
|
1184 |
+
# Get channels index (skipping zero channel contexts)
|
1185 |
+
channels_id = self.channels_ids[layer]
|
1186 |
+
# Get channels
|
1187 |
+
channels = channels_list[channels_id]
|
1188 |
+
message = f"Missing context for layer {layer} at index {channels_id}"
|
1189 |
+
assert exists(channels), message
|
1190 |
+
# Check channels
|
1191 |
+
num_channels = self.context_channels[layer]
|
1192 |
+
message = f"Expected context with {num_channels} channels at idx {channels_id}"
|
1193 |
+
assert channels.shape[1] == num_channels, message
|
1194 |
+
# STFT channels if requested
|
1195 |
+
channels = self.stft.encode1d(channels) if self.use_stft_context else channels # type: ignore # noqa
|
1196 |
+
return channels
|
1197 |
+
|
1198 |
+
def get_mapping(
|
1199 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
1200 |
+
) -> Optional[Tensor]:
|
1201 |
+
"""Combines context time features and features into mapping"""
|
1202 |
+
items, mapping = [], None
|
1203 |
+
# Compute time features
|
1204 |
+
if self.use_context_time:
|
1205 |
+
assert_message = "use_context_time=True but no time features provided"
|
1206 |
+
assert exists(time), assert_message
|
1207 |
+
items += [self.to_time(time)]
|
1208 |
+
# Compute features
|
1209 |
+
if self.use_context_features:
|
1210 |
+
assert_message = "context_features exists but no features provided"
|
1211 |
+
assert exists(features), assert_message
|
1212 |
+
items += [self.to_features(features)]
|
1213 |
+
# Compute joint mapping
|
1214 |
+
if self.use_context_time or self.use_context_features:
|
1215 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
1216 |
+
mapping = self.to_mapping(mapping)
|
1217 |
+
return mapping
|
1218 |
+
|
1219 |
+
def forward(
|
1220 |
+
self,
|
1221 |
+
x: Tensor,
|
1222 |
+
time: Optional[Tensor] = None,
|
1223 |
+
*,
|
1224 |
+
features: Optional[Tensor] = None,
|
1225 |
+
channels_list: Optional[Sequence[Tensor]] = None,
|
1226 |
+
embedding: Optional[Tensor] = None,
|
1227 |
+
embedding_mask: Optional[Tensor] = None,
|
1228 |
+
causal: Optional[bool] = False,
|
1229 |
+
) -> Tensor:
|
1230 |
+
channels = self.get_channels(channels_list, layer=0)
|
1231 |
+
# Apply stft if required
|
1232 |
+
print(x.shape)
|
1233 |
+
x = self.stft.encode1d(x) if self.use_stft else x # type: ignore
|
1234 |
+
print(x.shape)
|
1235 |
+
# Concat context channels at layer 0 if provided
|
1236 |
+
x = torch.cat([x, channels], dim=1) if exists(channels) else x
|
1237 |
+
print(x.shape)
|
1238 |
+
# Compute mapping from time and features
|
1239 |
+
mapping = self.get_mapping(time, features)
|
1240 |
+
x = self.to_in(x, mapping, causal=causal)
|
1241 |
+
print(x.shape)
|
1242 |
+
skips_list = [x]
|
1243 |
+
|
1244 |
+
for i, downsample in enumerate(self.downsamples):
|
1245 |
+
channels = self.get_channels(channels_list, layer=i + 1)
|
1246 |
+
x, skips = downsample(
|
1247 |
+
x, mapping=mapping, channels=channels, embedding=embedding, embedding_mask=embedding_mask, causal=causal
|
1248 |
+
)
|
1249 |
+
skips_list += [skips]
|
1250 |
+
|
1251 |
+
x = self.bottleneck(x, mapping=mapping, embedding=embedding, embedding_mask=embedding_mask, causal=causal)
|
1252 |
+
for i, upsample in enumerate(self.upsamples):
|
1253 |
+
skips = skips_list.pop()
|
1254 |
+
x = upsample(x, skips=skips, mapping=mapping, embedding=embedding, embedding_mask=embedding_mask, causal=causal)
|
1255 |
+
|
1256 |
+
x += skips_list.pop()
|
1257 |
+
x = self.to_out(x, mapping, causal=causal)
|
1258 |
+
x = self.stft.decode1d(x) if self.use_stft else x
|
1259 |
+
|
1260 |
+
return x
|
1261 |
+
|
1262 |
+
|
1263 |
+
""" Conditioning Modules """
|
1264 |
+
|
1265 |
+
|
1266 |
+
class FixedEmbedding(nn.Module):
|
1267 |
+
def __init__(self, max_length: int, features: int):
|
1268 |
+
super().__init__()
|
1269 |
+
self.max_length = max_length
|
1270 |
+
self.embedding = nn.Embedding(max_length, features)
|
1271 |
+
|
1272 |
+
def forward(self, x: Tensor) -> Tensor:
|
1273 |
+
batch_size, length, device = *x.shape[0:2], x.device
|
1274 |
+
assert_message = "Input sequence length must be <= max_length"
|
1275 |
+
assert length <= self.max_length, assert_message
|
1276 |
+
position = torch.arange(length, device=device)
|
1277 |
+
fixed_embedding = self.embedding(position)
|
1278 |
+
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
1279 |
+
return fixed_embedding
|
1280 |
+
|
1281 |
+
|
1282 |
+
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
1283 |
+
if proba == 1:
|
1284 |
+
return torch.ones(shape, device=device, dtype=torch.bool)
|
1285 |
+
elif proba == 0:
|
1286 |
+
return torch.zeros(shape, device=device, dtype=torch.bool)
|
1287 |
+
else:
|
1288 |
+
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
1289 |
+
|
1290 |
+
|
1291 |
+
class UNetCFG1d(UNet1d):
|
1292 |
+
|
1293 |
+
"""UNet1d with Classifier-Free Guidance"""
|
1294 |
+
|
1295 |
+
def __init__(
|
1296 |
+
self,
|
1297 |
+
context_embedding_max_length: int,
|
1298 |
+
context_embedding_features: int,
|
1299 |
+
use_xattn_time: bool = False,
|
1300 |
+
**kwargs,
|
1301 |
+
):
|
1302 |
+
super().__init__(
|
1303 |
+
context_embedding_features=context_embedding_features, **kwargs
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
self.use_xattn_time = use_xattn_time
|
1307 |
+
|
1308 |
+
if use_xattn_time:
|
1309 |
+
assert exists(context_embedding_features)
|
1310 |
+
self.to_time_embedding = nn.Sequential(
|
1311 |
+
TimePositionalEmbedding(
|
1312 |
+
dim=kwargs["channels"], out_features=context_embedding_features
|
1313 |
+
),
|
1314 |
+
nn.GELU(),
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
context_embedding_max_length += 1 # Add one for time embedding
|
1318 |
+
|
1319 |
+
self.fixed_embedding = FixedEmbedding(
|
1320 |
+
max_length=context_embedding_max_length, features=context_embedding_features
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
def forward( # type: ignore
|
1324 |
+
self,
|
1325 |
+
x: Tensor,
|
1326 |
+
time: Tensor,
|
1327 |
+
*,
|
1328 |
+
embedding: Tensor,
|
1329 |
+
embedding_mask: Optional[Tensor] = None,
|
1330 |
+
embedding_scale: float = 1.0,
|
1331 |
+
embedding_mask_proba: float = 0.0,
|
1332 |
+
batch_cfg: bool = False,
|
1333 |
+
rescale_cfg: bool = False,
|
1334 |
+
scale_phi: float = 0.4,
|
1335 |
+
negative_embedding: Optional[Tensor] = None,
|
1336 |
+
negative_embedding_mask: Optional[Tensor] = None,
|
1337 |
+
**kwargs,
|
1338 |
+
) -> Tensor:
|
1339 |
+
b, device = embedding.shape[0], embedding.device
|
1340 |
+
|
1341 |
+
if self.use_xattn_time:
|
1342 |
+
embedding = torch.cat([embedding, self.to_time_embedding(time).unsqueeze(1)], dim=1)
|
1343 |
+
|
1344 |
+
if embedding_mask is not None:
|
1345 |
+
embedding_mask = torch.cat([embedding_mask, torch.ones((b, 1), device=device)], dim=1)
|
1346 |
+
|
1347 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
1348 |
+
|
1349 |
+
if embedding_mask_proba > 0.0:
|
1350 |
+
# Randomly mask embedding
|
1351 |
+
batch_mask = rand_bool(
|
1352 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
1353 |
+
)
|
1354 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
1355 |
+
|
1356 |
+
if embedding_scale != 1.0:
|
1357 |
+
if batch_cfg:
|
1358 |
+
batch_x = torch.cat([x, x], dim=0)
|
1359 |
+
batch_time = torch.cat([time, time], dim=0)
|
1360 |
+
|
1361 |
+
if negative_embedding is not None:
|
1362 |
+
if negative_embedding_mask is not None:
|
1363 |
+
negative_embedding_mask = negative_embedding_mask.to(torch.bool).unsqueeze(2)
|
1364 |
+
|
1365 |
+
negative_embedding = torch.where(negative_embedding_mask, negative_embedding, fixed_embedding)
|
1366 |
+
|
1367 |
+
batch_embed = torch.cat([embedding, negative_embedding], dim=0)
|
1368 |
+
|
1369 |
+
else:
|
1370 |
+
batch_embed = torch.cat([embedding, fixed_embedding], dim=0)
|
1371 |
+
|
1372 |
+
batch_mask = None
|
1373 |
+
if embedding_mask is not None:
|
1374 |
+
batch_mask = torch.cat([embedding_mask, embedding_mask], dim=0)
|
1375 |
+
|
1376 |
+
batch_features = None
|
1377 |
+
features = kwargs.pop("features", None)
|
1378 |
+
if self.use_context_features:
|
1379 |
+
batch_features = torch.cat([features, features], dim=0)
|
1380 |
+
|
1381 |
+
batch_channels = None
|
1382 |
+
channels_list = kwargs.pop("channels_list", None)
|
1383 |
+
if self.use_context_channels:
|
1384 |
+
batch_channels = []
|
1385 |
+
for channels in channels_list:
|
1386 |
+
batch_channels += [torch.cat([channels, channels], dim=0)]
|
1387 |
+
|
1388 |
+
# Compute both normal and fixed embedding outputs
|
1389 |
+
batch_out = super().forward(batch_x, batch_time, embedding=batch_embed, embedding_mask=batch_mask, features=batch_features, channels_list=batch_channels, **kwargs)
|
1390 |
+
out, out_masked = batch_out.chunk(2, dim=0)
|
1391 |
+
|
1392 |
+
else:
|
1393 |
+
# Compute both normal and fixed embedding outputs
|
1394 |
+
out = super().forward(x, time, embedding=embedding, embedding_mask=embedding_mask, **kwargs)
|
1395 |
+
out_masked = super().forward(x, time, embedding=fixed_embedding, embedding_mask=embedding_mask, **kwargs)
|
1396 |
+
|
1397 |
+
out_cfg = out_masked + (out - out_masked) * embedding_scale
|
1398 |
+
|
1399 |
+
if rescale_cfg:
|
1400 |
+
|
1401 |
+
out_std = out.std(dim=1, keepdim=True)
|
1402 |
+
out_cfg_std = out_cfg.std(dim=1, keepdim=True)
|
1403 |
+
|
1404 |
+
return scale_phi * (out_cfg * (out_std/out_cfg_std)) + (1-scale_phi) * out_cfg
|
1405 |
+
|
1406 |
+
else:
|
1407 |
+
|
1408 |
+
return out_cfg
|
1409 |
+
|
1410 |
+
else:
|
1411 |
+
return super().forward(x, time, embedding=embedding, embedding_mask=embedding_mask, **kwargs)
|
1412 |
+
|
1413 |
+
|
1414 |
+
class UNetNCCA1d(UNet1d):
|
1415 |
+
|
1416 |
+
"""UNet1d with Noise Channel Conditioning Augmentation"""
|
1417 |
+
|
1418 |
+
def __init__(self, context_features: int, **kwargs):
|
1419 |
+
super().__init__(context_features=context_features, **kwargs)
|
1420 |
+
self.embedder = NumberEmbedder(features=context_features)
|
1421 |
+
|
1422 |
+
def expand(self, x: Any, shape: Tuple[int, ...]) -> Tensor:
|
1423 |
+
x = x if torch.is_tensor(x) else torch.tensor(x)
|
1424 |
+
return x.expand(shape)
|
1425 |
+
|
1426 |
+
def forward( # type: ignore
|
1427 |
+
self,
|
1428 |
+
x: Tensor,
|
1429 |
+
time: Tensor,
|
1430 |
+
*,
|
1431 |
+
channels_list: Sequence[Tensor],
|
1432 |
+
channels_augmentation: Union[
|
1433 |
+
bool, Sequence[bool], Sequence[Sequence[bool]], Tensor
|
1434 |
+
] = False,
|
1435 |
+
channels_scale: Union[
|
1436 |
+
float, Sequence[float], Sequence[Sequence[float]], Tensor
|
1437 |
+
] = 0,
|
1438 |
+
**kwargs,
|
1439 |
+
) -> Tensor:
|
1440 |
+
b, n = x.shape[0], len(channels_list)
|
1441 |
+
channels_augmentation = self.expand(channels_augmentation, shape=(b, n)).to(x)
|
1442 |
+
channels_scale = self.expand(channels_scale, shape=(b, n)).to(x)
|
1443 |
+
|
1444 |
+
# Augmentation (for each channel list item)
|
1445 |
+
for i in range(n):
|
1446 |
+
scale = channels_scale[:, i] * channels_augmentation[:, i]
|
1447 |
+
scale = rearrange(scale, "b -> b 1 1")
|
1448 |
+
item = channels_list[i]
|
1449 |
+
channels_list[i] = torch.randn_like(item) * scale + item * (1 - scale) # type: ignore # noqa
|
1450 |
+
|
1451 |
+
# Scale embedding (sum reduction if more than one channel list item)
|
1452 |
+
channels_scale_emb = self.embedder(channels_scale)
|
1453 |
+
channels_scale_emb = reduce(channels_scale_emb, "b n d -> b d", "sum")
|
1454 |
+
|
1455 |
+
return super().forward(
|
1456 |
+
x=x,
|
1457 |
+
time=time,
|
1458 |
+
channels_list=channels_list,
|
1459 |
+
features=channels_scale_emb,
|
1460 |
+
**kwargs,
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
|
1464 |
+
class UNetAll1d(UNetCFG1d, UNetNCCA1d):
|
1465 |
+
def __init__(self, *args, **kwargs):
|
1466 |
+
super().__init__(*args, **kwargs)
|
1467 |
+
|
1468 |
+
def forward(self, *args, **kwargs): # type: ignore
|
1469 |
+
return UNetCFG1d.forward(self, *args, **kwargs)
|
1470 |
+
|
1471 |
+
|
1472 |
+
def XUNet1d(type: str = "base", **kwargs) -> UNet1d:
|
1473 |
+
if type == "base":
|
1474 |
+
return UNet1d(**kwargs)
|
1475 |
+
elif type == "all":
|
1476 |
+
return UNetAll1d(**kwargs)
|
1477 |
+
elif type == "cfg":
|
1478 |
+
return UNetCFG1d(**kwargs)
|
1479 |
+
elif type == "ncca":
|
1480 |
+
return UNetNCCA1d(**kwargs)
|
1481 |
+
else:
|
1482 |
+
raise ValueError(f"Unknown XUNet1d type: {type}")
|
1483 |
+
|
1484 |
+
class NumberEmbedder(nn.Module):
|
1485 |
+
def __init__(
|
1486 |
+
self,
|
1487 |
+
features: int,
|
1488 |
+
dim: int = 256,
|
1489 |
+
):
|
1490 |
+
super().__init__()
|
1491 |
+
self.features = features
|
1492 |
+
self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
|
1493 |
+
|
1494 |
+
def forward(self, x: Union[List[float], Tensor]) -> Tensor:
|
1495 |
+
if not torch.is_tensor(x):
|
1496 |
+
device = next(self.embedding.parameters()).device
|
1497 |
+
x = torch.tensor(x, device=device)
|
1498 |
+
assert isinstance(x, Tensor)
|
1499 |
+
shape = x.shape
|
1500 |
+
x = rearrange(x, "... -> (...)")
|
1501 |
+
embedding = self.embedding(x)
|
1502 |
+
x = embedding.view(*shape, self.features)
|
1503 |
+
return x # type: ignore
|
1504 |
+
|
1505 |
+
|
1506 |
+
"""
|
1507 |
+
Audio Transforms
|
1508 |
+
"""
|
1509 |
+
|
1510 |
+
|
1511 |
+
class STFT(nn.Module):
|
1512 |
+
"""Helper for torch stft and istft"""
|
1513 |
+
|
1514 |
+
def __init__(
|
1515 |
+
self,
|
1516 |
+
num_fft: int = 1023,
|
1517 |
+
hop_length: int = 256,
|
1518 |
+
window_length: Optional[int] = None,
|
1519 |
+
length: Optional[int] = None,
|
1520 |
+
use_complex: bool = False,
|
1521 |
+
):
|
1522 |
+
super().__init__()
|
1523 |
+
self.num_fft = num_fft
|
1524 |
+
self.hop_length = default(hop_length, floor(num_fft // 4))
|
1525 |
+
self.window_length = default(window_length, num_fft)
|
1526 |
+
self.length = length
|
1527 |
+
self.register_buffer("window", torch.hann_window(self.window_length))
|
1528 |
+
self.use_complex = use_complex
|
1529 |
+
|
1530 |
+
def encode(self, wave: Tensor) -> Tuple[Tensor, Tensor]:
|
1531 |
+
b = wave.shape[0]
|
1532 |
+
wave = rearrange(wave, "b c t -> (b c) t")
|
1533 |
+
|
1534 |
+
stft = torch.stft(
|
1535 |
+
wave,
|
1536 |
+
n_fft=self.num_fft,
|
1537 |
+
hop_length=self.hop_length,
|
1538 |
+
win_length=self.window_length,
|
1539 |
+
window=self.window, # type: ignore
|
1540 |
+
return_complex=True,
|
1541 |
+
normalized=True,
|
1542 |
+
)
|
1543 |
+
|
1544 |
+
if self.use_complex:
|
1545 |
+
# Returns real and imaginary
|
1546 |
+
stft_a, stft_b = stft.real, stft.imag
|
1547 |
+
else:
|
1548 |
+
# Returns magnitude and phase matrices
|
1549 |
+
magnitude, phase = torch.abs(stft), torch.angle(stft)
|
1550 |
+
stft_a, stft_b = magnitude, phase
|
1551 |
+
|
1552 |
+
return rearrange_many((stft_a, stft_b), "(b c) f l -> b c f l", b=b)
|
1553 |
+
|
1554 |
+
def decode(self, stft_a: Tensor, stft_b: Tensor) -> Tensor:
|
1555 |
+
b, l = stft_a.shape[0], stft_a.shape[-1] # noqa
|
1556 |
+
length = closest_power_2(l * self.hop_length)
|
1557 |
+
|
1558 |
+
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b c f l -> (b c) f l")
|
1559 |
+
|
1560 |
+
if self.use_complex:
|
1561 |
+
real, imag = stft_a, stft_b
|
1562 |
+
else:
|
1563 |
+
magnitude, phase = stft_a, stft_b
|
1564 |
+
real, imag = magnitude * torch.cos(phase), magnitude * torch.sin(phase)
|
1565 |
+
|
1566 |
+
stft = torch.stack([real, imag], dim=-1)
|
1567 |
+
|
1568 |
+
wave = torch.istft(
|
1569 |
+
stft,
|
1570 |
+
n_fft=self.num_fft,
|
1571 |
+
hop_length=self.hop_length,
|
1572 |
+
win_length=self.window_length,
|
1573 |
+
window=self.window, # type: ignore
|
1574 |
+
length=default(self.length, length),
|
1575 |
+
normalized=True,
|
1576 |
+
)
|
1577 |
+
|
1578 |
+
return rearrange(wave, "(b c) t -> b c t", b=b)
|
1579 |
+
|
1580 |
+
def encode1d(
|
1581 |
+
self, wave: Tensor, stacked: bool = True
|
1582 |
+
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
1583 |
+
stft_a, stft_b = self.encode(wave)
|
1584 |
+
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b c f l -> b (c f) l")
|
1585 |
+
return torch.cat((stft_a, stft_b), dim=1) if stacked else (stft_a, stft_b)
|
1586 |
+
|
1587 |
+
def decode1d(self, stft_pair: Tensor) -> Tensor:
|
1588 |
+
f = self.num_fft // 2 + 1
|
1589 |
+
stft_a, stft_b = stft_pair.chunk(chunks=2, dim=1)
|
1590 |
+
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b (c f) l -> b c f l", f=f)
|
1591 |
+
return self.decode(stft_a, stft_b)
|
cosyvoice/flow/stable/blocks.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from torch.backends.cuda import sdp_kernel
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
from dac.nn.layers import Snake1d
|
12 |
+
|
13 |
+
class ResidualBlock(nn.Module):
|
14 |
+
def __init__(self, main, skip=None):
|
15 |
+
super().__init__()
|
16 |
+
self.main = nn.Sequential(*main)
|
17 |
+
self.skip = skip if skip else nn.Identity()
|
18 |
+
|
19 |
+
def forward(self, input):
|
20 |
+
return self.main(input) + self.skip(input)
|
21 |
+
|
22 |
+
class ResConvBlock(ResidualBlock):
|
23 |
+
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
|
24 |
+
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
|
25 |
+
super().__init__([
|
26 |
+
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
27 |
+
nn.GroupNorm(1, c_mid),
|
28 |
+
Snake1d(c_mid) if use_snake else nn.GELU(),
|
29 |
+
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
30 |
+
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
|
31 |
+
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
|
32 |
+
], skip)
|
33 |
+
|
34 |
+
class SelfAttention1d(nn.Module):
|
35 |
+
def __init__(self, c_in, n_head=1, dropout_rate=0.):
|
36 |
+
super().__init__()
|
37 |
+
assert c_in % n_head == 0
|
38 |
+
self.norm = nn.GroupNorm(1, c_in)
|
39 |
+
self.n_head = n_head
|
40 |
+
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
|
41 |
+
self.out_proj = nn.Conv1d(c_in, c_in, 1)
|
42 |
+
self.dropout = nn.Dropout(dropout_rate, inplace=True)
|
43 |
+
|
44 |
+
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
45 |
+
|
46 |
+
if not self.use_flash:
|
47 |
+
return
|
48 |
+
|
49 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
50 |
+
|
51 |
+
if device_properties.major == 8 and device_properties.minor == 0:
|
52 |
+
# Use flash attention for A100 GPUs
|
53 |
+
self.sdp_kernel_config = (True, False, False)
|
54 |
+
else:
|
55 |
+
# Don't use flash attention for other GPUs
|
56 |
+
self.sdp_kernel_config = (False, True, True)
|
57 |
+
|
58 |
+
def forward(self, input):
|
59 |
+
n, c, s = input.shape
|
60 |
+
qkv = self.qkv_proj(self.norm(input))
|
61 |
+
qkv = qkv.view(
|
62 |
+
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
|
63 |
+
q, k, v = qkv.chunk(3, dim=1)
|
64 |
+
scale = k.shape[3]**-0.25
|
65 |
+
|
66 |
+
if self.use_flash:
|
67 |
+
with sdp_kernel(*self.sdp_kernel_config):
|
68 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
|
69 |
+
else:
|
70 |
+
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
71 |
+
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
|
72 |
+
|
73 |
+
|
74 |
+
return input + self.dropout(self.out_proj(y))
|
75 |
+
|
76 |
+
class SkipBlock(nn.Module):
|
77 |
+
def __init__(self, *main):
|
78 |
+
super().__init__()
|
79 |
+
self.main = nn.Sequential(*main)
|
80 |
+
|
81 |
+
def forward(self, input):
|
82 |
+
return torch.cat([self.main(input), input], dim=1)
|
83 |
+
|
84 |
+
class FourierFeatures(nn.Module):
|
85 |
+
def __init__(self, in_features, out_features, std=1.):
|
86 |
+
super().__init__()
|
87 |
+
assert out_features % 2 == 0
|
88 |
+
self.weight = nn.Parameter(torch.randn(
|
89 |
+
[out_features // 2, in_features]) * std)
|
90 |
+
|
91 |
+
def forward(self, input):
|
92 |
+
f = 2 * math.pi * input @ self.weight.T
|
93 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
94 |
+
|
95 |
+
def expand_to_planes(input, shape):
|
96 |
+
return input[..., None].repeat([1, 1, shape[2]])
|
97 |
+
|
98 |
+
_kernels = {
|
99 |
+
'linear':
|
100 |
+
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
101 |
+
'cubic':
|
102 |
+
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
103 |
+
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
104 |
+
'lanczos3':
|
105 |
+
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
106 |
+
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
107 |
+
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
108 |
+
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
109 |
+
}
|
110 |
+
|
111 |
+
class Downsample1d(nn.Module):
|
112 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
113 |
+
super().__init__()
|
114 |
+
self.pad_mode = pad_mode
|
115 |
+
kernel_1d = torch.tensor(_kernels[kernel])
|
116 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
117 |
+
self.register_buffer('kernel', kernel_1d)
|
118 |
+
self.channels_last = channels_last
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
if self.channels_last:
|
122 |
+
x = x.permute(0, 2, 1)
|
123 |
+
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
|
124 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
125 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
126 |
+
weight[indices, indices] = self.kernel.to(weight)
|
127 |
+
x = F.conv1d(x, weight, stride=2)
|
128 |
+
if self.channels_last:
|
129 |
+
x = x.permute(0, 2, 1)
|
130 |
+
return x
|
131 |
+
|
132 |
+
|
133 |
+
class Upsample1d(nn.Module):
|
134 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
135 |
+
super().__init__()
|
136 |
+
self.pad_mode = pad_mode
|
137 |
+
kernel_1d = torch.tensor(_kernels[kernel]) * 2
|
138 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
139 |
+
self.register_buffer('kernel', kernel_1d)
|
140 |
+
self.channels_last = channels_last
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
if self.channels_last:
|
144 |
+
x = x.permute(0, 2, 1)
|
145 |
+
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
|
146 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
147 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
148 |
+
weight[indices, indices] = self.kernel.to(weight)
|
149 |
+
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
150 |
+
if self.channels_last:
|
151 |
+
x = x.permute(0, 2, 1)
|
152 |
+
return x
|
153 |
+
|
154 |
+
def Downsample1d_2(
|
155 |
+
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
156 |
+
) -> nn.Module:
|
157 |
+
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
158 |
+
|
159 |
+
return nn.Conv1d(
|
160 |
+
in_channels=in_channels,
|
161 |
+
out_channels=out_channels,
|
162 |
+
kernel_size=factor * kernel_multiplier + 1,
|
163 |
+
stride=factor,
|
164 |
+
padding=factor * (kernel_multiplier // 2),
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
def Upsample1d_2(
|
169 |
+
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
170 |
+
) -> nn.Module:
|
171 |
+
|
172 |
+
if factor == 1:
|
173 |
+
return nn.Conv1d(
|
174 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
|
175 |
+
)
|
176 |
+
|
177 |
+
if use_nearest:
|
178 |
+
return nn.Sequential(
|
179 |
+
nn.Upsample(scale_factor=factor, mode="nearest"),
|
180 |
+
nn.Conv1d(
|
181 |
+
in_channels=in_channels,
|
182 |
+
out_channels=out_channels,
|
183 |
+
kernel_size=3,
|
184 |
+
padding=1,
|
185 |
+
),
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
return nn.ConvTranspose1d(
|
189 |
+
in_channels=in_channels,
|
190 |
+
out_channels=out_channels,
|
191 |
+
kernel_size=factor * 2,
|
192 |
+
stride=factor,
|
193 |
+
padding=factor // 2 + factor % 2,
|
194 |
+
output_padding=factor % 2,
|
195 |
+
)
|
196 |
+
|
197 |
+
def zero_init(layer):
|
198 |
+
nn.init.zeros_(layer.weight)
|
199 |
+
if layer.bias is not None:
|
200 |
+
nn.init.zeros_(layer.bias)
|
201 |
+
return layer
|
202 |
+
|
203 |
+
def rms_norm(x, scale, eps):
|
204 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
205 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
206 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
207 |
+
return x * scale.to(x.dtype)
|
208 |
+
|
209 |
+
#rms_norm = torch.compile(rms_norm)
|
210 |
+
|
211 |
+
class AdaRMSNorm(nn.Module):
|
212 |
+
def __init__(self, features, cond_features, eps=1e-6):
|
213 |
+
super().__init__()
|
214 |
+
self.eps = eps
|
215 |
+
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
|
216 |
+
|
217 |
+
def extra_repr(self):
|
218 |
+
return f"eps={self.eps},"
|
219 |
+
|
220 |
+
def forward(self, x, cond):
|
221 |
+
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
|
222 |
+
|
223 |
+
def normalize(x, eps=1e-4):
|
224 |
+
dim = list(range(1, x.ndim))
|
225 |
+
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
|
226 |
+
alpha = np.sqrt(n.numel() / x.numel())
|
227 |
+
return x / torch.add(eps, n, alpha=alpha)
|
228 |
+
|
229 |
+
class ForcedWNConv1d(nn.Module):
|
230 |
+
def __init__(self, in_channels, out_channels, kernel_size=1):
|
231 |
+
super().__init__()
|
232 |
+
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
|
233 |
+
|
234 |
+
def forward(self, x):
|
235 |
+
if self.training:
|
236 |
+
with torch.no_grad():
|
237 |
+
self.weight.copy_(normalize(self.weight))
|
238 |
+
|
239 |
+
fan_in = self.weight[0].numel()
|
240 |
+
|
241 |
+
w = normalize(self.weight) / math.sqrt(fan_in)
|
242 |
+
|
243 |
+
return F.conv1d(x, w, padding='same')
|
244 |
+
|
245 |
+
# Kernels
|
246 |
+
|
247 |
+
use_compile = True
|
248 |
+
|
249 |
+
def compile(function, *args, **kwargs):
|
250 |
+
if not use_compile:
|
251 |
+
return function
|
252 |
+
try:
|
253 |
+
return torch.compile(function, *args, **kwargs)
|
254 |
+
except RuntimeError:
|
255 |
+
return function
|
256 |
+
|
257 |
+
|
258 |
+
@compile
|
259 |
+
def linear_geglu(x, weight, bias=None):
|
260 |
+
x = x @ weight.mT
|
261 |
+
if bias is not None:
|
262 |
+
x = x + bias
|
263 |
+
x, gate = x.chunk(2, dim=-1)
|
264 |
+
return x * F.gelu(gate)
|
265 |
+
|
266 |
+
|
267 |
+
@compile
|
268 |
+
def rms_norm(x, scale, eps):
|
269 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
270 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
271 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
272 |
+
return x * scale.to(x.dtype)
|
273 |
+
|
274 |
+
# Layers
|
275 |
+
|
276 |
+
class LinearGEGLU(nn.Linear):
|
277 |
+
def __init__(self, in_features, out_features, bias=True):
|
278 |
+
super().__init__(in_features, out_features * 2, bias=bias)
|
279 |
+
self.out_features = out_features
|
280 |
+
|
281 |
+
def forward(self, x):
|
282 |
+
return linear_geglu(x, self.weight, self.bias)
|
283 |
+
|
284 |
+
|
285 |
+
class RMSNorm(nn.Module):
|
286 |
+
def __init__(self, shape, fix_scale = False, eps=1e-6):
|
287 |
+
super().__init__()
|
288 |
+
self.eps = eps
|
289 |
+
|
290 |
+
if fix_scale:
|
291 |
+
self.register_buffer("scale", torch.ones(shape))
|
292 |
+
else:
|
293 |
+
self.scale = nn.Parameter(torch.ones(shape))
|
294 |
+
|
295 |
+
def extra_repr(self):
|
296 |
+
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
return rms_norm(x, self.scale, self.eps)
|
300 |
+
|
301 |
+
def snake_beta(x, alpha, beta):
|
302 |
+
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
303 |
+
|
304 |
+
# try:
|
305 |
+
# snake_beta = torch.compile(snake_beta)
|
306 |
+
# except RuntimeError:
|
307 |
+
# pass
|
308 |
+
|
309 |
+
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
310 |
+
# License available in LICENSES/LICENSE_NVIDIA.txt
|
311 |
+
class SnakeBeta(nn.Module):
|
312 |
+
|
313 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
314 |
+
super(SnakeBeta, self).__init__()
|
315 |
+
self.in_features = in_features
|
316 |
+
|
317 |
+
# initialize alpha
|
318 |
+
self.alpha_logscale = alpha_logscale
|
319 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
320 |
+
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
321 |
+
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
322 |
+
else: # linear scale alphas initialized to ones
|
323 |
+
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
324 |
+
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
325 |
+
|
326 |
+
self.alpha.requires_grad = alpha_trainable
|
327 |
+
self.beta.requires_grad = alpha_trainable
|
328 |
+
|
329 |
+
self.no_div_by_zero = 0.000000001
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
333 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
334 |
+
if self.alpha_logscale:
|
335 |
+
alpha = torch.exp(alpha)
|
336 |
+
beta = torch.exp(beta)
|
337 |
+
x = snake_beta(x, alpha, beta)
|
338 |
+
|
339 |
+
return x
|
cosyvoice/flow/stable/dit.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing as tp
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from x_transformers import ContinuousTransformerWrapper, Encoder
|
9 |
+
|
10 |
+
from .blocks import FourierFeatures
|
11 |
+
from .transformer import ContinuousTransformer
|
12 |
+
from .transformer_use_mask import ContinuousTransformer as ContinuousTransformer_mask
|
13 |
+
|
14 |
+
|
15 |
+
class DiffusionTransformer(nn.Module):
|
16 |
+
def __init__(self,
|
17 |
+
io_channels=32,
|
18 |
+
patch_size=1,
|
19 |
+
embed_dim=768,
|
20 |
+
cond_token_dim=0,
|
21 |
+
project_cond_tokens=True,
|
22 |
+
global_cond_dim=0,
|
23 |
+
project_global_cond=True,
|
24 |
+
input_concat_dim=0,
|
25 |
+
prepend_cond_dim=0,
|
26 |
+
depth=12,
|
27 |
+
num_heads=8,
|
28 |
+
transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers",
|
29 |
+
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
30 |
+
**kwargs):
|
31 |
+
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.cond_token_dim = cond_token_dim
|
35 |
+
|
36 |
+
# Timestep embeddings
|
37 |
+
timestep_features_dim = 256
|
38 |
+
|
39 |
+
self.timestep_features = FourierFeatures(1, timestep_features_dim)
|
40 |
+
|
41 |
+
self.to_timestep_embed = nn.Sequential(
|
42 |
+
nn.Linear(timestep_features_dim, embed_dim, bias=True),
|
43 |
+
nn.SiLU(),
|
44 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
45 |
+
)
|
46 |
+
|
47 |
+
if cond_token_dim > 0:
|
48 |
+
# Conditioning tokens
|
49 |
+
|
50 |
+
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
|
51 |
+
self.to_cond_embed = nn.Sequential(
|
52 |
+
nn.Linear(cond_token_dim, cond_embed_dim, bias=False),
|
53 |
+
nn.SiLU(),
|
54 |
+
nn.Linear(cond_embed_dim, cond_embed_dim, bias=False)
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
cond_embed_dim = 0
|
58 |
+
self.to_cond_embed = nn.Identity()
|
59 |
+
|
60 |
+
if global_cond_dim > 0:
|
61 |
+
# Global conditioning
|
62 |
+
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
|
63 |
+
self.to_global_embed = nn.Sequential(
|
64 |
+
nn.Linear(global_cond_dim, global_embed_dim, bias=False),
|
65 |
+
nn.SiLU(),
|
66 |
+
nn.Linear(global_embed_dim, global_embed_dim, bias=False)
|
67 |
+
)
|
68 |
+
|
69 |
+
if prepend_cond_dim > 0:
|
70 |
+
# Prepend conditioning
|
71 |
+
self.to_prepend_embed = nn.Sequential(
|
72 |
+
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
|
73 |
+
nn.SiLU(),
|
74 |
+
nn.Linear(embed_dim, embed_dim, bias=False)
|
75 |
+
)
|
76 |
+
|
77 |
+
self.input_concat_dim = input_concat_dim
|
78 |
+
|
79 |
+
dim_in = io_channels + self.input_concat_dim
|
80 |
+
|
81 |
+
self.patch_size = patch_size
|
82 |
+
|
83 |
+
# Transformer
|
84 |
+
|
85 |
+
self.transformer_type = transformer_type
|
86 |
+
|
87 |
+
self.global_cond_type = global_cond_type
|
88 |
+
|
89 |
+
if self.transformer_type == "x-transformers":
|
90 |
+
self.transformer = ContinuousTransformerWrapper(
|
91 |
+
dim_in=dim_in * patch_size,
|
92 |
+
dim_out=io_channels * patch_size,
|
93 |
+
max_seq_len=0, # Not relevant without absolute positional embeds
|
94 |
+
attn_layers=Encoder(
|
95 |
+
dim=embed_dim,
|
96 |
+
depth=depth,
|
97 |
+
heads=num_heads,
|
98 |
+
attn_flash=True,
|
99 |
+
cross_attend=cond_token_dim > 0,
|
100 |
+
dim_context=None if cond_embed_dim == 0 else cond_embed_dim,
|
101 |
+
zero_init_branch_output=True,
|
102 |
+
use_abs_pos_emb=False,
|
103 |
+
rotary_pos_emb=True,
|
104 |
+
ff_swish=True,
|
105 |
+
ff_glu=True,
|
106 |
+
**kwargs
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
elif self.transformer_type == "continuous_transformer":
|
111 |
+
|
112 |
+
global_dim = None
|
113 |
+
|
114 |
+
if self.global_cond_type == "adaLN":
|
115 |
+
# The global conditioning is projected to the embed_dim already at this point
|
116 |
+
global_dim = embed_dim
|
117 |
+
|
118 |
+
self.transformer = ContinuousTransformer(
|
119 |
+
dim=embed_dim,
|
120 |
+
depth=depth,
|
121 |
+
dim_heads=embed_dim // num_heads,
|
122 |
+
dim_in=dim_in * patch_size,
|
123 |
+
dim_out=io_channels * patch_size,
|
124 |
+
cross_attend=cond_token_dim > 0,
|
125 |
+
cond_token_dim=cond_embed_dim,
|
126 |
+
global_cond_dim=global_dim,
|
127 |
+
**kwargs
|
128 |
+
)
|
129 |
+
elif self.transformer_type == "continuous_transformer_with_mask":
|
130 |
+
|
131 |
+
global_dim = None
|
132 |
+
|
133 |
+
if self.global_cond_type == "adaLN":
|
134 |
+
# The global conditioning is projected to the embed_dim already at this point
|
135 |
+
global_dim = embed_dim
|
136 |
+
|
137 |
+
self.transformer = ContinuousTransformer_mask(
|
138 |
+
dim=embed_dim,
|
139 |
+
depth=depth,
|
140 |
+
dim_heads=embed_dim // num_heads,
|
141 |
+
dim_in=dim_in * patch_size,
|
142 |
+
dim_out=io_channels * patch_size,
|
143 |
+
cross_attend=cond_token_dim > 0,
|
144 |
+
cond_token_dim=cond_embed_dim,
|
145 |
+
global_cond_dim=global_dim,
|
146 |
+
**kwargs
|
147 |
+
)
|
148 |
+
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
|
151 |
+
|
152 |
+
self.preprocess_conv = nn.Conv1d(dim_in, dim_in, 1, bias=False)
|
153 |
+
nn.init.zeros_(self.preprocess_conv.weight)
|
154 |
+
self.postprocess_conv = nn.Conv1d(io_channels, io_channels, 1, bias=False)
|
155 |
+
nn.init.zeros_(self.postprocess_conv.weight)
|
156 |
+
|
157 |
+
def _forward(
|
158 |
+
self,
|
159 |
+
x,
|
160 |
+
t,
|
161 |
+
mask=None,
|
162 |
+
cross_attn_cond=None,
|
163 |
+
cross_attn_cond_mask=None,
|
164 |
+
input_concat_cond=None,
|
165 |
+
global_embed=None,
|
166 |
+
prepend_cond=None,
|
167 |
+
prepend_cond_mask=None,
|
168 |
+
return_info=False,
|
169 |
+
**kwargs):
|
170 |
+
### 1. 需要重新写过以适应不同长度的con
|
171 |
+
if cross_attn_cond is not None:
|
172 |
+
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
173 |
+
|
174 |
+
if global_embed is not None:
|
175 |
+
# Project the global conditioning to the embedding dimension
|
176 |
+
global_embed = self.to_global_embed(global_embed)
|
177 |
+
|
178 |
+
prepend_inputs = None
|
179 |
+
prepend_mask = None
|
180 |
+
prepend_length = 0
|
181 |
+
if prepend_cond is not None:
|
182 |
+
# Project the prepend conditioning to the embedding dimension
|
183 |
+
prepend_cond = self.to_prepend_embed(prepend_cond)
|
184 |
+
|
185 |
+
prepend_inputs = prepend_cond
|
186 |
+
if prepend_cond_mask is not None:
|
187 |
+
prepend_mask = prepend_cond_mask
|
188 |
+
|
189 |
+
if input_concat_cond is not None:
|
190 |
+
|
191 |
+
# Interpolate input_concat_cond to the same length as x
|
192 |
+
if input_concat_cond.shape[2] != x.shape[2]:
|
193 |
+
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2],), mode='nearest')
|
194 |
+
|
195 |
+
x = torch.cat([x, input_concat_cond], dim=1)
|
196 |
+
|
197 |
+
# Get the batch of timestep embeddings
|
198 |
+
try:
|
199 |
+
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
|
200 |
+
except Exception as e:
|
201 |
+
print("t.shape:", t.shape, "x.shape", x.shape)
|
202 |
+
print("t:", t)
|
203 |
+
raise e
|
204 |
+
|
205 |
+
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
206 |
+
if global_embed is not None:
|
207 |
+
global_embed = global_embed + timestep_embed
|
208 |
+
else:
|
209 |
+
global_embed = timestep_embed
|
210 |
+
|
211 |
+
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
212 |
+
if self.global_cond_type == "prepend":
|
213 |
+
if prepend_inputs is None:
|
214 |
+
# Prepend inputs are just the global embed, and the mask is all ones
|
215 |
+
prepend_inputs = global_embed.unsqueeze(1)
|
216 |
+
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
217 |
+
else:
|
218 |
+
# Prepend inputs are the prepend conditioning + the global embed
|
219 |
+
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
220 |
+
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)],
|
221 |
+
dim=1)
|
222 |
+
|
223 |
+
prepend_length = prepend_inputs.shape[1]
|
224 |
+
|
225 |
+
x = self.preprocess_conv(x) + x
|
226 |
+
|
227 |
+
x = rearrange(x, "b c t -> b t c")
|
228 |
+
|
229 |
+
extra_args = {}
|
230 |
+
|
231 |
+
if self.global_cond_type == "adaLN":
|
232 |
+
extra_args["global_cond"] = global_embed
|
233 |
+
|
234 |
+
if self.patch_size > 1:
|
235 |
+
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
236 |
+
|
237 |
+
if self.transformer_type == "x-transformers":
|
238 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
|
239 |
+
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
|
240 |
+
**extra_args, **kwargs)
|
241 |
+
elif self.transformer_type in ["continuous_transformer","continuous_transformer_with_mask"] :
|
242 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
|
243 |
+
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
|
244 |
+
return_info=return_info, **extra_args, **kwargs)
|
245 |
+
|
246 |
+
if return_info:
|
247 |
+
output, info = output
|
248 |
+
elif self.transformer_type == "mm_transformer":
|
249 |
+
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask,
|
250 |
+
**extra_args, **kwargs)
|
251 |
+
|
252 |
+
output = rearrange(output, "b t c -> b c t")[:, :, prepend_length:]
|
253 |
+
|
254 |
+
if self.patch_size > 1:
|
255 |
+
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
256 |
+
|
257 |
+
output = self.postprocess_conv(output) + output
|
258 |
+
|
259 |
+
if return_info:
|
260 |
+
return output, info
|
261 |
+
|
262 |
+
return output
|
263 |
+
|
264 |
+
def forward(
|
265 |
+
self,
|
266 |
+
x,
|
267 |
+
t,
|
268 |
+
cross_attn_cond=None,
|
269 |
+
cross_attn_cond_mask=None,
|
270 |
+
negative_cross_attn_cond=None,
|
271 |
+
negative_cross_attn_mask=None,
|
272 |
+
input_concat_cond=None,
|
273 |
+
global_embed=None,
|
274 |
+
negative_global_embed=None,
|
275 |
+
prepend_cond=None,
|
276 |
+
prepend_cond_mask=None,
|
277 |
+
cfg_scale=1.0,
|
278 |
+
cfg_dropout_prob=0.0,
|
279 |
+
causal=False,
|
280 |
+
scale_phi=0.0,
|
281 |
+
mask=None,
|
282 |
+
return_info=False,
|
283 |
+
**kwargs):
|
284 |
+
|
285 |
+
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
|
286 |
+
|
287 |
+
if cross_attn_cond_mask is not None:
|
288 |
+
cross_attn_cond_mask = cross_attn_cond_mask.bool()
|
289 |
+
|
290 |
+
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
|
291 |
+
|
292 |
+
if prepend_cond_mask is not None:
|
293 |
+
prepend_cond_mask = prepend_cond_mask.bool()
|
294 |
+
|
295 |
+
# CFG dropout
|
296 |
+
if cfg_dropout_prob > 0.0:
|
297 |
+
if cross_attn_cond is not None:
|
298 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
299 |
+
dropout_mask = torch.bernoulli(
|
300 |
+
torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(
|
301 |
+
torch.bool)
|
302 |
+
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
|
303 |
+
|
304 |
+
if prepend_cond is not None:
|
305 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
306 |
+
dropout_mask = torch.bernoulli(
|
307 |
+
torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(
|
308 |
+
torch.bool)
|
309 |
+
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
|
310 |
+
|
311 |
+
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
|
312 |
+
# Classifier-free guidance
|
313 |
+
# Concatenate conditioned and unconditioned inputs on the batch dimension
|
314 |
+
batch_inputs = torch.cat([x, x], dim=0)
|
315 |
+
batch_timestep = torch.cat([t, t], dim=0)
|
316 |
+
|
317 |
+
if global_embed is not None:
|
318 |
+
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
|
319 |
+
else:
|
320 |
+
batch_global_cond = None
|
321 |
+
|
322 |
+
if input_concat_cond is not None:
|
323 |
+
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
|
324 |
+
else:
|
325 |
+
batch_input_concat_cond = None
|
326 |
+
|
327 |
+
batch_cond = None
|
328 |
+
batch_cond_masks = None
|
329 |
+
|
330 |
+
# Handle CFG for cross-attention conditioning
|
331 |
+
if cross_attn_cond is not None:
|
332 |
+
|
333 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
334 |
+
|
335 |
+
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
|
336 |
+
if negative_cross_attn_cond is not None:
|
337 |
+
|
338 |
+
# If there's a negative cross-attention mask, set the masked tokens to the null embed
|
339 |
+
if negative_cross_attn_mask is not None:
|
340 |
+
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
|
341 |
+
|
342 |
+
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond,
|
343 |
+
null_embed)
|
344 |
+
|
345 |
+
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
|
346 |
+
|
347 |
+
else:
|
348 |
+
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
|
349 |
+
|
350 |
+
if cross_attn_cond_mask is not None:
|
351 |
+
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
|
352 |
+
|
353 |
+
batch_prepend_cond = None
|
354 |
+
batch_prepend_cond_mask = None
|
355 |
+
|
356 |
+
if prepend_cond is not None:
|
357 |
+
|
358 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
359 |
+
|
360 |
+
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
|
361 |
+
|
362 |
+
if prepend_cond_mask is not None:
|
363 |
+
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
|
364 |
+
|
365 |
+
if mask is not None:
|
366 |
+
batch_masks = torch.cat([mask, mask], dim=0)
|
367 |
+
else:
|
368 |
+
batch_masks = None
|
369 |
+
|
370 |
+
batch_output = self._forward(
|
371 |
+
batch_inputs,
|
372 |
+
batch_timestep,
|
373 |
+
cross_attn_cond=batch_cond,
|
374 |
+
cross_attn_cond_mask=batch_cond_masks,
|
375 |
+
mask=batch_masks,
|
376 |
+
input_concat_cond=batch_input_concat_cond,
|
377 |
+
global_embed=batch_global_cond,
|
378 |
+
prepend_cond=batch_prepend_cond,
|
379 |
+
prepend_cond_mask=batch_prepend_cond_mask,
|
380 |
+
return_info=return_info,
|
381 |
+
**kwargs)
|
382 |
+
|
383 |
+
if return_info:
|
384 |
+
batch_output, info = batch_output
|
385 |
+
|
386 |
+
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
|
387 |
+
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
|
388 |
+
|
389 |
+
# CFG Rescale
|
390 |
+
if scale_phi != 0.0:
|
391 |
+
cond_out_std = cond_output.std(dim=1, keepdim=True)
|
392 |
+
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
|
393 |
+
output = scale_phi * (cfg_output * (cond_out_std / out_cfg_std)) + (1 - scale_phi) * cfg_output
|
394 |
+
else:
|
395 |
+
output = cfg_output
|
396 |
+
|
397 |
+
if return_info:
|
398 |
+
return output, info
|
399 |
+
|
400 |
+
return output
|
401 |
+
|
402 |
+
else:
|
403 |
+
return self._forward(
|
404 |
+
x,
|
405 |
+
t,
|
406 |
+
cross_attn_cond=cross_attn_cond,
|
407 |
+
cross_attn_cond_mask=cross_attn_cond_mask,
|
408 |
+
input_concat_cond=input_concat_cond,
|
409 |
+
global_embed=global_embed,
|
410 |
+
prepend_cond=prepend_cond,
|
411 |
+
prepend_cond_mask=prepend_cond_mask,
|
412 |
+
mask=mask,
|
413 |
+
return_info=return_info,
|
414 |
+
**kwargs
|
415 |
+
)
|
cosyvoice/flow/stable/dit_v2.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing as tp
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from x_transformers import ContinuousTransformerWrapper, Encoder
|
9 |
+
|
10 |
+
from .blocks import FourierFeatures
|
11 |
+
from .transformer import ContinuousTransformer
|
12 |
+
from model.stable import transformer_use_mask
|
13 |
+
|
14 |
+
|
15 |
+
class DiffusionTransformerV2(nn.Module):
|
16 |
+
def __init__(self,
|
17 |
+
io_channels=32,
|
18 |
+
patch_size=1,
|
19 |
+
embed_dim=768,
|
20 |
+
cond_token_dim=0,
|
21 |
+
project_cond_tokens=True,
|
22 |
+
global_cond_dim=0,
|
23 |
+
project_global_cond=True,
|
24 |
+
input_concat_dim=0,
|
25 |
+
prepend_cond_dim=0,
|
26 |
+
depth=12,
|
27 |
+
num_heads=8,
|
28 |
+
transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers",
|
29 |
+
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
30 |
+
**kwargs):
|
31 |
+
|
32 |
+
super().__init__()
|
33 |
+
d_model = embed_dim
|
34 |
+
n_head = num_heads
|
35 |
+
n_layers = depth
|
36 |
+
encoder_layer = torch.nn.TransformerEncoderLayer(batch_first=True,
|
37 |
+
norm_first=True,
|
38 |
+
d_model=d_model,
|
39 |
+
nhead=n_head)
|
40 |
+
self.transformer = torch.nn.TransformerEncoder(encoder_layer, num_layers=n_layers)
|
41 |
+
|
42 |
+
# ===================================== timestep embedding
|
43 |
+
timestep_features_dim = 256
|
44 |
+
self.timestep_features = FourierFeatures(1, timestep_features_dim)
|
45 |
+
self.to_timestep_embed = nn.Sequential(
|
46 |
+
nn.Linear(timestep_features_dim, embed_dim, bias=True),
|
47 |
+
nn.SiLU(),
|
48 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def _forward(
|
53 |
+
self,
|
54 |
+
Xt_btd,
|
55 |
+
t, #(1d)
|
56 |
+
mu_btd,
|
57 |
+
):
|
58 |
+
|
59 |
+
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
|
60 |
+
cated_input = torch.cat([t,mu,x_t])
|
61 |
+
|
62 |
+
### 1. 需要重新写过以适应不同长度的con
|
63 |
+
if cross_attn_cond is not None:
|
64 |
+
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
65 |
+
|
66 |
+
if global_embed is not None:
|
67 |
+
# Project the global conditioning to the embedding dimension
|
68 |
+
global_embed = self.to_global_embed(global_embed)
|
69 |
+
|
70 |
+
prepend_inputs = None
|
71 |
+
prepend_mask = None
|
72 |
+
prepend_length = 0
|
73 |
+
if prepend_cond is not None:
|
74 |
+
# Project the prepend conditioning to the embedding dimension
|
75 |
+
prepend_cond = self.to_prepend_embed(prepend_cond)
|
76 |
+
|
77 |
+
prepend_inputs = prepend_cond
|
78 |
+
if prepend_cond_mask is not None:
|
79 |
+
prepend_mask = prepend_cond_mask
|
80 |
+
|
81 |
+
if input_concat_cond is not None:
|
82 |
+
|
83 |
+
# Interpolate input_concat_cond to the same length as x
|
84 |
+
if input_concat_cond.shape[2] != x.shape[2]:
|
85 |
+
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2],), mode='nearest')
|
86 |
+
|
87 |
+
x = torch.cat([x, input_concat_cond], dim=1)
|
88 |
+
|
89 |
+
# Get the batch of timestep embeddings
|
90 |
+
try:
|
91 |
+
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
|
92 |
+
except Exception as e:
|
93 |
+
print("t.shape:", t.shape, "x.shape", x.shape)
|
94 |
+
print("t:", t)
|
95 |
+
raise e
|
96 |
+
|
97 |
+
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
98 |
+
if global_embed is not None:
|
99 |
+
global_embed = global_embed + timestep_embed
|
100 |
+
else:
|
101 |
+
global_embed = timestep_embed
|
102 |
+
|
103 |
+
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
104 |
+
if self.global_cond_type == "prepend":
|
105 |
+
if prepend_inputs is None:
|
106 |
+
# Prepend inputs are just the global embed, and the mask is all ones
|
107 |
+
prepend_inputs = global_embed.unsqueeze(1)
|
108 |
+
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
109 |
+
else:
|
110 |
+
# Prepend inputs are the prepend conditioning + the global embed
|
111 |
+
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
112 |
+
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)],
|
113 |
+
dim=1)
|
114 |
+
|
115 |
+
prepend_length = prepend_inputs.shape[1]
|
116 |
+
|
117 |
+
x = self.preprocess_conv(x) + x
|
118 |
+
|
119 |
+
x = rearrange(x, "b c t -> b t c")
|
120 |
+
|
121 |
+
extra_args = {}
|
122 |
+
|
123 |
+
if self.global_cond_type == "adaLN":
|
124 |
+
extra_args["global_cond"] = global_embed
|
125 |
+
|
126 |
+
if self.patch_size > 1:
|
127 |
+
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
128 |
+
|
129 |
+
if self.transformer_type == "x-transformers":
|
130 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
|
131 |
+
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
|
132 |
+
**extra_args, **kwargs)
|
133 |
+
elif self.transformer_type in ["continuous_transformer", "continuous_transformer_with_mask"]:
|
134 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
|
135 |
+
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
|
136 |
+
return_info=return_info, **extra_args, **kwargs)
|
137 |
+
|
138 |
+
if return_info:
|
139 |
+
output, info = output
|
140 |
+
elif self.transformer_type == "mm_transformer":
|
141 |
+
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask,
|
142 |
+
**extra_args, **kwargs)
|
143 |
+
|
144 |
+
output = rearrange(output, "b t c -> b c t")[:, :, prepend_length:]
|
145 |
+
|
146 |
+
if self.patch_size > 1:
|
147 |
+
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
148 |
+
|
149 |
+
output = self.postprocess_conv(output) + output
|
150 |
+
|
151 |
+
if return_info:
|
152 |
+
return output, info
|
153 |
+
|
154 |
+
return output
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self,
|
158 |
+
x,
|
159 |
+
t,
|
160 |
+
cross_attn_cond=None,
|
161 |
+
cross_attn_cond_mask=None,
|
162 |
+
negative_cross_attn_cond=None,
|
163 |
+
negative_cross_attn_mask=None,
|
164 |
+
input_concat_cond=None,
|
165 |
+
global_embed=None,
|
166 |
+
negative_global_embed=None,
|
167 |
+
prepend_cond=None,
|
168 |
+
prepend_cond_mask=None,
|
169 |
+
cfg_scale=1.0,
|
170 |
+
cfg_dropout_prob=0.0,
|
171 |
+
causal=False,
|
172 |
+
scale_phi=0.0,
|
173 |
+
mask=None,
|
174 |
+
return_info=False,
|
175 |
+
**kwargs):
|
176 |
+
|
177 |
+
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
|
178 |
+
|
179 |
+
if cross_attn_cond_mask is not None:
|
180 |
+
cross_attn_cond_mask = cross_attn_cond_mask.bool()
|
181 |
+
|
182 |
+
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
|
183 |
+
|
184 |
+
if prepend_cond_mask is not None:
|
185 |
+
prepend_cond_mask = prepend_cond_mask.bool()
|
186 |
+
|
187 |
+
# CFG dropout
|
188 |
+
if cfg_dropout_prob > 0.0:
|
189 |
+
if cross_attn_cond is not None:
|
190 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
191 |
+
dropout_mask = torch.bernoulli(
|
192 |
+
torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(
|
193 |
+
torch.bool)
|
194 |
+
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
|
195 |
+
|
196 |
+
if prepend_cond is not None:
|
197 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
198 |
+
dropout_mask = torch.bernoulli(
|
199 |
+
torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(
|
200 |
+
torch.bool)
|
201 |
+
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
|
202 |
+
|
203 |
+
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
|
204 |
+
# Classifier-free guidance
|
205 |
+
# Concatenate conditioned and unconditioned inputs on the batch dimension
|
206 |
+
batch_inputs = torch.cat([x, x], dim=0)
|
207 |
+
batch_timestep = torch.cat([t, t], dim=0)
|
208 |
+
|
209 |
+
if global_embed is not None:
|
210 |
+
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
|
211 |
+
else:
|
212 |
+
batch_global_cond = None
|
213 |
+
|
214 |
+
if input_concat_cond is not None:
|
215 |
+
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
|
216 |
+
else:
|
217 |
+
batch_input_concat_cond = None
|
218 |
+
|
219 |
+
batch_cond = None
|
220 |
+
batch_cond_masks = None
|
221 |
+
|
222 |
+
# Handle CFG for cross-attention conditioning
|
223 |
+
if cross_attn_cond is not None:
|
224 |
+
|
225 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
226 |
+
|
227 |
+
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
|
228 |
+
if negative_cross_attn_cond is not None:
|
229 |
+
|
230 |
+
# If there's a negative cross-attention mask, set the masked tokens to the null embed
|
231 |
+
if negative_cross_attn_mask is not None:
|
232 |
+
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
|
233 |
+
|
234 |
+
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond,
|
235 |
+
null_embed)
|
236 |
+
|
237 |
+
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
|
238 |
+
|
239 |
+
else:
|
240 |
+
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
|
241 |
+
|
242 |
+
if cross_attn_cond_mask is not None:
|
243 |
+
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
|
244 |
+
|
245 |
+
batch_prepend_cond = None
|
246 |
+
batch_prepend_cond_mask = None
|
247 |
+
|
248 |
+
if prepend_cond is not None:
|
249 |
+
|
250 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
251 |
+
|
252 |
+
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
|
253 |
+
|
254 |
+
if prepend_cond_mask is not None:
|
255 |
+
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
|
256 |
+
|
257 |
+
if mask is not None:
|
258 |
+
batch_masks = torch.cat([mask, mask], dim=0)
|
259 |
+
else:
|
260 |
+
batch_masks = None
|
261 |
+
|
262 |
+
batch_output = self._forward(
|
263 |
+
batch_inputs,
|
264 |
+
batch_timestep,
|
265 |
+
cross_attn_cond=batch_cond,
|
266 |
+
cross_attn_cond_mask=batch_cond_masks,
|
267 |
+
mask=batch_masks,
|
268 |
+
input_concat_cond=batch_input_concat_cond,
|
269 |
+
global_embed=batch_global_cond,
|
270 |
+
prepend_cond=batch_prepend_cond,
|
271 |
+
prepend_cond_mask=batch_prepend_cond_mask,
|
272 |
+
return_info=return_info,
|
273 |
+
**kwargs)
|
274 |
+
|
275 |
+
if return_info:
|
276 |
+
batch_output, info = batch_output
|
277 |
+
|
278 |
+
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
|
279 |
+
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
|
280 |
+
|
281 |
+
# CFG Rescale
|
282 |
+
if scale_phi != 0.0:
|
283 |
+
cond_out_std = cond_output.std(dim=1, keepdim=True)
|
284 |
+
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
|
285 |
+
output = scale_phi * (cfg_output * (cond_out_std / out_cfg_std)) + (1 - scale_phi) * cfg_output
|
286 |
+
else:
|
287 |
+
output = cfg_output
|
288 |
+
|
289 |
+
if return_info:
|
290 |
+
return output, info
|
291 |
+
|
292 |
+
return output
|
293 |
+
|
294 |
+
else:
|
295 |
+
return self._forward(
|
296 |
+
x,
|
297 |
+
t,
|
298 |
+
cross_attn_cond=cross_attn_cond,
|
299 |
+
cross_attn_cond_mask=cross_attn_cond_mask,
|
300 |
+
input_concat_cond=input_concat_cond,
|
301 |
+
global_embed=global_embed,
|
302 |
+
prepend_cond=prepend_cond,
|
303 |
+
prepend_cond_mask=prepend_cond_mask,
|
304 |
+
mask=mask,
|
305 |
+
return_info=return_info,
|
306 |
+
**kwargs
|
307 |
+
)
|
cosyvoice/flow/stable/sampling.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
from tqdm import trange, tqdm
|
4 |
+
|
5 |
+
import k_diffusion as K
|
6 |
+
|
7 |
+
# Define the noise schedule and sampling loop
|
8 |
+
def get_alphas_sigmas(t):
|
9 |
+
"""Returns the scaling factors for the clean image (alpha) and for the
|
10 |
+
noise (sigma), given a timestep."""
|
11 |
+
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
12 |
+
|
13 |
+
def alpha_sigma_to_t(alpha, sigma):
|
14 |
+
"""Returns a timestep, given the scaling factors for the clean image and for
|
15 |
+
the noise."""
|
16 |
+
return torch.atan2(sigma, alpha) / math.pi * 2
|
17 |
+
|
18 |
+
def t_to_alpha_sigma(t):
|
19 |
+
"""Returns the scaling factors for the clean image and for the noise, given
|
20 |
+
a timestep."""
|
21 |
+
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
22 |
+
|
23 |
+
|
24 |
+
@torch.no_grad()
|
25 |
+
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
|
26 |
+
"""Draws samples from a model given starting noise. Euler method"""
|
27 |
+
|
28 |
+
# Make tensor of ones to broadcast the single t values
|
29 |
+
ts = x.new_ones([x.shape[0]])
|
30 |
+
|
31 |
+
# Create the noise schedule
|
32 |
+
t = torch.linspace(sigma_max, 0, steps + 1)
|
33 |
+
|
34 |
+
#alphas, sigmas = 1-t, t
|
35 |
+
|
36 |
+
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
|
37 |
+
# Broadcast the current timestep to the correct shape
|
38 |
+
t_curr_tensor = t_curr * torch.ones(
|
39 |
+
(x.shape[0],), dtype=x.dtype, device=x.device
|
40 |
+
)
|
41 |
+
dt = t_prev - t_curr # we solve backwards in our formulation
|
42 |
+
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
|
43 |
+
|
44 |
+
# If we are on the last timestep, output the denoised image
|
45 |
+
return x
|
46 |
+
|
47 |
+
@torch.no_grad()
|
48 |
+
def sample(model, x, steps, eta, **extra_args):
|
49 |
+
"""Draws samples from a model given starting noise. v-diffusion"""
|
50 |
+
ts = x.new_ones([x.shape[0]])
|
51 |
+
|
52 |
+
# Create the noise schedule
|
53 |
+
t = torch.linspace(1, 0, steps + 1)[:-1]
|
54 |
+
|
55 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
56 |
+
|
57 |
+
# The sampling loop
|
58 |
+
for i in trange(steps):
|
59 |
+
|
60 |
+
# Get the model output (v, the predicted velocity)
|
61 |
+
with torch.cuda.amp.autocast():
|
62 |
+
v = model(x, ts * t[i], **extra_args).float()
|
63 |
+
|
64 |
+
# Predict the noise and the denoised image
|
65 |
+
pred = x * alphas[i] - v * sigmas[i]
|
66 |
+
eps = x * sigmas[i] + v * alphas[i]
|
67 |
+
|
68 |
+
# If we are not on the last timestep, compute the noisy image for the
|
69 |
+
# next timestep.
|
70 |
+
if i < steps - 1:
|
71 |
+
# If eta > 0, adjust the scaling factor for the predicted noise
|
72 |
+
# downward according to the amount of additional noise to add
|
73 |
+
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
|
74 |
+
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
|
75 |
+
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
|
76 |
+
|
77 |
+
# Recombine the predicted noise and predicted denoised image in the
|
78 |
+
# correct proportions for the next step
|
79 |
+
x = pred * alphas[i + 1] + eps * adjusted_sigma
|
80 |
+
|
81 |
+
# Add the correct amount of fresh noise
|
82 |
+
if eta:
|
83 |
+
x += torch.randn_like(x) * ddim_sigma
|
84 |
+
|
85 |
+
# If we are on the last timestep, output the denoised image
|
86 |
+
return pred
|
87 |
+
|
88 |
+
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
|
89 |
+
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
|
90 |
+
def get_bmask(i, steps, mask):
|
91 |
+
strength = (i+1)/(steps)
|
92 |
+
# convert to binary mask
|
93 |
+
bmask = torch.where(mask<=strength,1,0)
|
94 |
+
return bmask
|
95 |
+
|
96 |
+
def make_cond_model_fn(model, cond_fn):
|
97 |
+
def cond_model_fn(x, sigma, **kwargs):
|
98 |
+
with torch.enable_grad():
|
99 |
+
x = x.detach().requires_grad_()
|
100 |
+
denoised = model(x, sigma, **kwargs)
|
101 |
+
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
|
102 |
+
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
|
103 |
+
return cond_denoised
|
104 |
+
return cond_model_fn
|
105 |
+
|
106 |
+
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
|
107 |
+
# init_data is init_audio as latents (if this is latent diffusion)
|
108 |
+
# For sampling, set both init_data and mask to None
|
109 |
+
# For variations, set init_data
|
110 |
+
# For inpainting, set both init_data & mask
|
111 |
+
def sample_k(
|
112 |
+
model_fn,
|
113 |
+
noise,
|
114 |
+
init_data=None,
|
115 |
+
mask=None,
|
116 |
+
steps=100,
|
117 |
+
sampler_type="dpmpp-2m-sde",
|
118 |
+
sigma_min=0.5,
|
119 |
+
sigma_max=50,
|
120 |
+
rho=1.0, device="cuda",
|
121 |
+
callback=None,
|
122 |
+
cond_fn=None,
|
123 |
+
**extra_args
|
124 |
+
):
|
125 |
+
|
126 |
+
denoiser = K.external.VDenoiser(model_fn)
|
127 |
+
|
128 |
+
if cond_fn is not None:
|
129 |
+
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
130 |
+
|
131 |
+
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
|
132 |
+
sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
|
133 |
+
# Scale the initial noise by sigma
|
134 |
+
noise = noise * sigmas[0]
|
135 |
+
|
136 |
+
wrapped_callback = callback
|
137 |
+
|
138 |
+
if mask is None and init_data is not None:
|
139 |
+
# VARIATION (no inpainting)
|
140 |
+
# set the initial latent to the init_data, and noise it with initial sigma
|
141 |
+
x = init_data + noise
|
142 |
+
elif mask is not None and init_data is not None:
|
143 |
+
# INPAINTING
|
144 |
+
bmask = get_bmask(0, steps, mask)
|
145 |
+
# initial noising
|
146 |
+
input_noised = init_data + noise
|
147 |
+
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
|
148 |
+
x = input_noised * bmask + noise * (1-bmask)
|
149 |
+
# define the inpainting callback function (Note: side effects, it mutates x)
|
150 |
+
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
|
151 |
+
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
152 |
+
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
|
153 |
+
def inpainting_callback(args):
|
154 |
+
i = args["i"]
|
155 |
+
x = args["x"]
|
156 |
+
sigma = args["sigma"]
|
157 |
+
#denoised = args["denoised"]
|
158 |
+
# noise the init_data input with this step's appropriate amount of noise
|
159 |
+
input_noised = init_data + torch.randn_like(init_data) * sigma
|
160 |
+
# shrinking hard mask
|
161 |
+
bmask = get_bmask(i, steps, mask)
|
162 |
+
# mix input_noise with x, using binary mask
|
163 |
+
new_x = input_noised * bmask + x * (1-bmask)
|
164 |
+
# mutate x
|
165 |
+
x[:,:,:] = new_x[:,:,:]
|
166 |
+
# wrap together the inpainting callback and the user-submitted callback.
|
167 |
+
if callback is None:
|
168 |
+
wrapped_callback = inpainting_callback
|
169 |
+
else:
|
170 |
+
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
|
171 |
+
else:
|
172 |
+
# SAMPLING
|
173 |
+
# set the initial latent to noise
|
174 |
+
x = noise
|
175 |
+
|
176 |
+
|
177 |
+
with torch.cuda.amp.autocast():
|
178 |
+
if sampler_type == "k-heun":
|
179 |
+
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
180 |
+
elif sampler_type == "k-lms":
|
181 |
+
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
182 |
+
elif sampler_type == "k-dpmpp-2s-ancestral":
|
183 |
+
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
184 |
+
elif sampler_type == "k-dpm-2":
|
185 |
+
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
186 |
+
elif sampler_type == "k-dpm-fast":
|
187 |
+
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
188 |
+
elif sampler_type == "k-dpm-adaptive":
|
189 |
+
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
190 |
+
elif sampler_type == "dpmpp-2m-sde":
|
191 |
+
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
192 |
+
elif sampler_type == "dpmpp-3m-sde":
|
193 |
+
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
194 |
+
|
195 |
+
# Uses discrete Euler sampling for rectified flow models
|
196 |
+
# init_data is init_audio as latents (if this is latent diffusion)
|
197 |
+
# For sampling, set both init_data and mask to None
|
198 |
+
# For variations, set init_data
|
199 |
+
# For inpainting, set both init_data & mask
|
200 |
+
def sample_rf(
|
201 |
+
model_fn,
|
202 |
+
noise,
|
203 |
+
init_data=None,
|
204 |
+
steps=100,
|
205 |
+
sigma_max=1,
|
206 |
+
device="cuda",
|
207 |
+
callback=None,
|
208 |
+
cond_fn=None,
|
209 |
+
**extra_args
|
210 |
+
):
|
211 |
+
|
212 |
+
if sigma_max > 1:
|
213 |
+
sigma_max = 1
|
214 |
+
|
215 |
+
if cond_fn is not None:
|
216 |
+
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
217 |
+
|
218 |
+
wrapped_callback = callback
|
219 |
+
|
220 |
+
if init_data is not None:
|
221 |
+
# VARIATION (no inpainting)
|
222 |
+
# Interpolate the init data and the noise for init audio
|
223 |
+
x = init_data * (1 - sigma_max) + noise * sigma_max
|
224 |
+
else:
|
225 |
+
# SAMPLING
|
226 |
+
# set the initial latent to noise
|
227 |
+
x = noise
|
228 |
+
|
229 |
+
with torch.cuda.amp.autocast():
|
230 |
+
# TODO: Add callback support
|
231 |
+
#return sample_discrete_euler(model_fn, x, steps, sigma_max, callback=wrapped_callback, **extra_args)
|
232 |
+
return sample_discrete_euler(model_fn, x, steps, sigma_max, **extra_args)
|
cosyvoice/flow/stable/stable_diffusion.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
from .dit import DiffusionTransformer
|
4 |
+
from .adp import UNet1d
|
5 |
+
from .sampling import sample
|
6 |
+
import math
|
7 |
+
from model.base import BaseModule
|
8 |
+
import pdb
|
9 |
+
|
10 |
+
target_length = 1536
|
11 |
+
|
12 |
+
|
13 |
+
def pad_and_create_mask(matrix, target_length):
|
14 |
+
T = matrix.shape[2]
|
15 |
+
if T > target_length:
|
16 |
+
raise ValueError("The third dimension length %s should not exceed %s" % (T, target_length))
|
17 |
+
|
18 |
+
padding_size = target_length - T
|
19 |
+
|
20 |
+
padded_matrix = F.pad(matrix, (0, padding_size), "constant", 0)
|
21 |
+
|
22 |
+
mask = torch.ones((1, target_length))
|
23 |
+
mask[:, T:] = 0 # Set the padding part to 0
|
24 |
+
|
25 |
+
return padded_matrix.to(matrix.device), mask.to(matrix.device)
|
26 |
+
|
27 |
+
|
28 |
+
class Stable_Diffusion(BaseModule):
|
29 |
+
def __init__(self, io_channels, input_concat_dim=None, embed_dim=768, depth=24, num_heads=24,
|
30 |
+
project_cond_tokens=False, transformer_type="continuous_transformer"):
|
31 |
+
super(Stable_Diffusion, self).__init__()
|
32 |
+
self.diffusion = DiffusionTransformer(
|
33 |
+
io_channels=io_channels,
|
34 |
+
input_concat_dim=input_concat_dim,
|
35 |
+
embed_dim=embed_dim,
|
36 |
+
# cond_token_dim=target_length,
|
37 |
+
depth=depth,
|
38 |
+
num_heads=num_heads,
|
39 |
+
project_cond_tokens=project_cond_tokens,
|
40 |
+
transformer_type=transformer_type,
|
41 |
+
)
|
42 |
+
# self.diffusion = UNet1d(
|
43 |
+
# in_channels=80,
|
44 |
+
# channels=256,
|
45 |
+
# resnet_groups=16,
|
46 |
+
# kernel_multiplier_downsample=2,
|
47 |
+
# multipliers=[4, 4, 4, 5, 5],
|
48 |
+
# factors=[1, 2, 2, 4], # 输入长度不一致卷积缩短
|
49 |
+
# num_blocks=[2, 2, 2, 2],
|
50 |
+
# attentions=[1, 3, 3, 3, 3],
|
51 |
+
# attention_heads=16,
|
52 |
+
# attention_multiplier=4,
|
53 |
+
# use_nearest_upsample=False,
|
54 |
+
# use_skip_scale=True,
|
55 |
+
# use_context_time=True
|
56 |
+
# )
|
57 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def forward(self, mu, mask, n_timesteps):
|
61 |
+
# pdb.set_trace()
|
62 |
+
mask = mask.squeeze(1)
|
63 |
+
noise = torch.randn_like(mu).to(mu.device)
|
64 |
+
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
|
65 |
+
# extra_args = {"cross_attn_cond": mu, "cross_attn_cond_mask": mask, "mask": mask}
|
66 |
+
extra_args = {"input_concat_cond": mu, "mask": mask}
|
67 |
+
fakes = sample(self.diffusion, noise, n_timesteps, 0, **extra_args)
|
68 |
+
|
69 |
+
return fakes
|
70 |
+
|
71 |
+
def compute_loss(self, x0, mask, mu):
|
72 |
+
|
73 |
+
# pdb.set_trace()
|
74 |
+
t = self.rng.draw(x0.shape[0])[:, 0].to(x0.device)
|
75 |
+
alphas, sigmas = torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
76 |
+
|
77 |
+
alphas = alphas[:, None, None]
|
78 |
+
sigmas = sigmas[:, None, None]
|
79 |
+
noise = torch.randn_like(x0)
|
80 |
+
noised_inputs = x0 * alphas + noise * sigmas
|
81 |
+
targets = noise * alphas - x0 * sigmas
|
82 |
+
mask = mask.squeeze(1)
|
83 |
+
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
|
84 |
+
# output = self.diffusion(noised_inputs, t, cross_attn_cond=mu,
|
85 |
+
# cross_attn_cond_mask=mask, mask=mask, cfg_dropout_prob=0.1)
|
86 |
+
# pdb.set_trace()
|
87 |
+
output = self.diffusion(noised_inputs, # [bs, 80, 229]
|
88 |
+
t, # (bs,)
|
89 |
+
input_concat_cond=mu,
|
90 |
+
mask=mask, # [bs, 229]
|
91 |
+
cfg_dropout_prob=0.1)
|
92 |
+
|
93 |
+
return self.mse_loss(output, targets, mask), output
|
94 |
+
|
95 |
+
def mse_loss(self, output, targets, mask):
|
96 |
+
|
97 |
+
mse_loss = F.mse_loss(output, targets, reduction='none')
|
98 |
+
|
99 |
+
if mask.ndim == 2 and mse_loss.ndim == 3:
|
100 |
+
mask = mask.unsqueeze(1)
|
101 |
+
|
102 |
+
if mask.shape[1] != mse_loss.shape[1]:
|
103 |
+
mask = mask.repeat(1, mse_loss.shape[1], 1)
|
104 |
+
|
105 |
+
mse_loss = mse_loss * mask
|
106 |
+
|
107 |
+
mse_loss = mse_loss.mean()
|
108 |
+
|
109 |
+
return mse_loss
|
cosyvoice/flow/stable/stable_diffusion_test.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
from .dit import DiffusionTransformer
|
4 |
+
from .adp import UNet1d
|
5 |
+
from .sampling import sample
|
6 |
+
import math
|
7 |
+
from model.base import BaseModule
|
8 |
+
import pdb
|
9 |
+
|
10 |
+
target_length = 1536
|
11 |
+
def pad_and_create_mask(matrix, target_length):
|
12 |
+
|
13 |
+
T = matrix.shape[2]
|
14 |
+
if T > target_length:
|
15 |
+
raise ValueError("The third dimension length %s should not exceed %s"%(T, target_length))
|
16 |
+
|
17 |
+
padding_size = target_length - T
|
18 |
+
|
19 |
+
padded_matrix = F.pad(matrix, (0, padding_size), "constant", 0)
|
20 |
+
|
21 |
+
mask = torch.ones((1, target_length))
|
22 |
+
mask[:, T:] = 0 # Set the padding part to 0
|
23 |
+
|
24 |
+
return padded_matrix.to(matrix.device), mask.to(matrix.device)
|
25 |
+
|
26 |
+
|
27 |
+
class Stable_Diffusion(BaseModule):
|
28 |
+
def __init__(self):
|
29 |
+
super(Stable_Diffusion, self).__init__()
|
30 |
+
self.diffusion = DiffusionTransformer(
|
31 |
+
io_channels=80,
|
32 |
+
# input_concat_dim=80,
|
33 |
+
embed_dim=768,
|
34 |
+
# cond_token_dim=target_length,
|
35 |
+
depth=24,
|
36 |
+
num_heads=24,
|
37 |
+
project_cond_tokens=False,
|
38 |
+
transformer_type="continuous_transformer",
|
39 |
+
)
|
40 |
+
# self.diffusion = UNet1d(
|
41 |
+
# in_channels=80,
|
42 |
+
# channels=256,
|
43 |
+
# resnet_groups=16,
|
44 |
+
# kernel_multiplier_downsample=2,
|
45 |
+
# multipliers=[4, 4, 4, 5, 5],
|
46 |
+
# factors=[1, 2, 2, 4], # 输入长度不一致卷积缩短
|
47 |
+
# num_blocks=[2, 2, 2, 2],
|
48 |
+
# attentions=[1, 3, 3, 3, 3],
|
49 |
+
# attention_heads=16,
|
50 |
+
# attention_multiplier=4,
|
51 |
+
# use_nearest_upsample=False,
|
52 |
+
# use_skip_scale=True,
|
53 |
+
# use_context_time=True
|
54 |
+
# )
|
55 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def forward(self, mu, mask, n_timesteps):
|
59 |
+
# pdb.set_trace()
|
60 |
+
mask = mask.squeeze(1)
|
61 |
+
# noise = torch.randn_like(mu).to(mu.device)
|
62 |
+
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
|
63 |
+
# extra_args = {"cross_attn_cond": mu, "cross_attn_cond_mask": mask, "mask": mask}
|
64 |
+
extra_args = {"mask": mask}
|
65 |
+
fakes = sample(self.diffusion, mu, n_timesteps, 0, **extra_args)
|
66 |
+
|
67 |
+
return fakes
|
68 |
+
|
69 |
+
|
70 |
+
def compute_loss(self, x0, mask, mu):
|
71 |
+
|
72 |
+
# pdb.set_trace()
|
73 |
+
t = self.rng.draw(x0.shape[0])[:, 0].to(x0.device)
|
74 |
+
alphas, sigmas = torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
75 |
+
|
76 |
+
alphas = alphas[:, None, None]
|
77 |
+
sigmas = sigmas[:, None, None]
|
78 |
+
noise = torch.randn_like(x0)
|
79 |
+
noised_inputs = x0 * alphas + noise * sigmas
|
80 |
+
targets = mu * alphas - x0 * sigmas
|
81 |
+
mask = mask.squeeze(1)
|
82 |
+
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
|
83 |
+
# output = self.diffusion(noised_inputs, t, cross_attn_cond=mu,
|
84 |
+
# cross_attn_cond_mask=mask, mask=mask, cfg_dropout_prob=0.1)
|
85 |
+
output = self.diffusion(noised_inputs, t, mask=mask, cfg_dropout_prob=0.1)
|
86 |
+
|
87 |
+
return self.mse_loss(output, targets, mask), output
|
88 |
+
|
89 |
+
|
90 |
+
def mse_loss(self, output, targets, mask):
|
91 |
+
|
92 |
+
mse_loss = F.mse_loss(output, targets, reduction='none')
|
93 |
+
|
94 |
+
if mask.ndim == 2 and mse_loss.ndim == 3:
|
95 |
+
mask = mask.unsqueeze(1)
|
96 |
+
|
97 |
+
if mask.shape[1] != mse_loss.shape[1]:
|
98 |
+
mask = mask.repeat(1, mse_loss.shape[1], 1)
|
99 |
+
|
100 |
+
mse_loss = mse_loss[mask]
|
101 |
+
|
102 |
+
mse_loss = mse_loss.mean()
|
103 |
+
|
104 |
+
return mse_loss
|
cosyvoice/flow/stable/transformer.py
ADDED
@@ -0,0 +1,816 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
from functools import reduce, partial
|
3 |
+
from packaging import version
|
4 |
+
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn, einsum
|
10 |
+
from torch.cuda.amp import autocast
|
11 |
+
from typing import Callable, Literal
|
12 |
+
|
13 |
+
try:
|
14 |
+
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
|
15 |
+
except ImportError as e:
|
16 |
+
print(e)
|
17 |
+
print('flash_attn not installed, disabling Flash Attention')
|
18 |
+
flash_attn_kvpacked_func = None
|
19 |
+
flash_attn_func = None
|
20 |
+
|
21 |
+
try:
|
22 |
+
import natten
|
23 |
+
except ImportError:
|
24 |
+
natten = None
|
25 |
+
|
26 |
+
def checkpoint(function, *args, **kwargs):
|
27 |
+
kwargs.setdefault("use_reentrant", False)
|
28 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
29 |
+
|
30 |
+
|
31 |
+
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
|
32 |
+
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
|
33 |
+
|
34 |
+
def create_causal_mask(i, j, device):
|
35 |
+
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
36 |
+
|
37 |
+
def or_reduce(masks):
|
38 |
+
head, *body = masks
|
39 |
+
for rest in body:
|
40 |
+
head = head | rest
|
41 |
+
return head
|
42 |
+
|
43 |
+
# positional embeddings
|
44 |
+
|
45 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
46 |
+
def __init__(self, dim, max_seq_len):
|
47 |
+
super().__init__()
|
48 |
+
self.scale = dim ** -0.5
|
49 |
+
self.max_seq_len = max_seq_len
|
50 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
51 |
+
|
52 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
53 |
+
seq_len, device = x.shape[1], x.device
|
54 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
55 |
+
|
56 |
+
if pos is None:
|
57 |
+
pos = torch.arange(seq_len, device = device)
|
58 |
+
|
59 |
+
if seq_start_pos is not None:
|
60 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
61 |
+
|
62 |
+
pos_emb = self.emb(pos)
|
63 |
+
pos_emb = pos_emb * self.scale
|
64 |
+
return pos_emb
|
65 |
+
|
66 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
67 |
+
def __init__(self, dim, theta = 10000):
|
68 |
+
super().__init__()
|
69 |
+
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
70 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
71 |
+
|
72 |
+
half_dim = dim // 2
|
73 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
74 |
+
inv_freq = theta ** -freq_seq
|
75 |
+
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
76 |
+
|
77 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
78 |
+
seq_len, device = x.shape[1], x.device
|
79 |
+
|
80 |
+
if pos is None:
|
81 |
+
pos = torch.arange(seq_len, device = device)
|
82 |
+
|
83 |
+
if seq_start_pos is not None:
|
84 |
+
pos = pos - seq_start_pos[..., None]
|
85 |
+
|
86 |
+
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
87 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
88 |
+
return emb * self.scale
|
89 |
+
|
90 |
+
class RotaryEmbedding(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
dim,
|
94 |
+
use_xpos = False,
|
95 |
+
scale_base = 512,
|
96 |
+
interpolation_factor = 1.,
|
97 |
+
base = 10000,
|
98 |
+
base_rescale_factor = 1.
|
99 |
+
):
|
100 |
+
super().__init__()
|
101 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
102 |
+
# has some connection to NTK literature
|
103 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
104 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
105 |
+
|
106 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
107 |
+
self.register_buffer('inv_freq', inv_freq)
|
108 |
+
|
109 |
+
assert interpolation_factor >= 1.
|
110 |
+
self.interpolation_factor = interpolation_factor
|
111 |
+
|
112 |
+
if not use_xpos:
|
113 |
+
self.register_buffer('scale', None)
|
114 |
+
return
|
115 |
+
|
116 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
117 |
+
|
118 |
+
self.scale_base = scale_base
|
119 |
+
self.register_buffer('scale', scale)
|
120 |
+
|
121 |
+
def forward_from_seq_len(self, seq_len):
|
122 |
+
device = self.inv_freq.device
|
123 |
+
|
124 |
+
t = torch.arange(seq_len, device = device)
|
125 |
+
return self.forward(t)
|
126 |
+
|
127 |
+
@autocast(enabled = False)
|
128 |
+
def forward(self, t):
|
129 |
+
device = self.inv_freq.device
|
130 |
+
|
131 |
+
t = t.to(torch.float32)
|
132 |
+
|
133 |
+
t = t / self.interpolation_factor
|
134 |
+
|
135 |
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
136 |
+
freqs = torch.cat((freqs, freqs), dim = -1)
|
137 |
+
|
138 |
+
if self.scale is None:
|
139 |
+
return freqs, 1.
|
140 |
+
|
141 |
+
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
142 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
143 |
+
scale = torch.cat((scale, scale), dim = -1)
|
144 |
+
|
145 |
+
return freqs, scale
|
146 |
+
|
147 |
+
def rotate_half(x):
|
148 |
+
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
149 |
+
x1, x2 = x.unbind(dim = -2)
|
150 |
+
return torch.cat((-x2, x1), dim = -1)
|
151 |
+
|
152 |
+
@autocast(enabled = False)
|
153 |
+
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
154 |
+
out_dtype = t.dtype
|
155 |
+
|
156 |
+
# cast to float32 if necessary for numerical stability
|
157 |
+
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
158 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
159 |
+
freqs, t = freqs.to(dtype), t.to(dtype)
|
160 |
+
freqs = freqs[-seq_len:, :]
|
161 |
+
|
162 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
163 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
164 |
+
|
165 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
166 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
167 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
168 |
+
|
169 |
+
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
170 |
+
|
171 |
+
return torch.cat((t, t_unrotated), dim = -1)
|
172 |
+
|
173 |
+
# norms
|
174 |
+
class LayerNorm(nn.Module):
|
175 |
+
def __init__(self, dim, bias=False, fix_scale=False):
|
176 |
+
"""
|
177 |
+
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
178 |
+
"""
|
179 |
+
super().__init__()
|
180 |
+
|
181 |
+
if fix_scale:
|
182 |
+
self.register_buffer("gamma", torch.ones(dim))
|
183 |
+
else:
|
184 |
+
self.gamma = nn.Parameter(torch.ones(dim))
|
185 |
+
|
186 |
+
if bias:
|
187 |
+
self.beta = nn.Parameter(torch.zeros(dim))
|
188 |
+
else:
|
189 |
+
self.register_buffer("beta", torch.zeros(dim))
|
190 |
+
|
191 |
+
|
192 |
+
def forward(self, x):
|
193 |
+
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
|
194 |
+
|
195 |
+
# feedforward
|
196 |
+
|
197 |
+
class GLU(nn.Module):
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
dim_in,
|
201 |
+
dim_out,
|
202 |
+
activation: Callable,
|
203 |
+
use_conv = False,
|
204 |
+
conv_kernel_size = 3,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
self.act = activation
|
208 |
+
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2))
|
209 |
+
self.use_conv = use_conv
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
if self.use_conv:
|
213 |
+
x = rearrange(x, 'b n d -> b d n')
|
214 |
+
x = self.proj(x)
|
215 |
+
x = rearrange(x, 'b d n -> b n d')
|
216 |
+
else:
|
217 |
+
x = self.proj(x)
|
218 |
+
|
219 |
+
x, gate = x.chunk(2, dim = -1)
|
220 |
+
return x * self.act(gate)
|
221 |
+
|
222 |
+
class FeedForward(nn.Module):
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
dim,
|
226 |
+
dim_out = None,
|
227 |
+
mult = 4,
|
228 |
+
no_bias = False,
|
229 |
+
glu = True,
|
230 |
+
use_conv = False,
|
231 |
+
conv_kernel_size = 3,
|
232 |
+
zero_init_output = True,
|
233 |
+
):
|
234 |
+
super().__init__()
|
235 |
+
inner_dim = int(dim * mult)
|
236 |
+
|
237 |
+
# Default to SwiGLU
|
238 |
+
|
239 |
+
activation = nn.SiLU()
|
240 |
+
|
241 |
+
dim_out = dim if dim_out is None else dim_out
|
242 |
+
|
243 |
+
if glu:
|
244 |
+
linear_in = GLU(dim, inner_dim, activation)
|
245 |
+
else:
|
246 |
+
linear_in = nn.Sequential(
|
247 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
248 |
+
nn.Linear(dim, inner_dim, bias = not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias),
|
249 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
250 |
+
activation
|
251 |
+
)
|
252 |
+
|
253 |
+
linear_out = nn.Linear(inner_dim, dim_out, bias = not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias)
|
254 |
+
|
255 |
+
# init last linear layer to 0
|
256 |
+
if zero_init_output:
|
257 |
+
nn.init.zeros_(linear_out.weight)
|
258 |
+
if not no_bias:
|
259 |
+
nn.init.zeros_(linear_out.bias)
|
260 |
+
|
261 |
+
|
262 |
+
self.ff = nn.Sequential(
|
263 |
+
linear_in,
|
264 |
+
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
265 |
+
linear_out,
|
266 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
267 |
+
)
|
268 |
+
|
269 |
+
def forward(self, x):
|
270 |
+
return self.ff(x)
|
271 |
+
|
272 |
+
class Attention(nn.Module):
|
273 |
+
def __init__(
|
274 |
+
self,
|
275 |
+
dim,
|
276 |
+
dim_heads = 64,
|
277 |
+
dim_context = None,
|
278 |
+
causal = False,
|
279 |
+
zero_init_output=True,
|
280 |
+
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
|
281 |
+
natten_kernel_size = None
|
282 |
+
):
|
283 |
+
super().__init__()
|
284 |
+
self.dim = dim
|
285 |
+
self.dim_heads = dim_heads
|
286 |
+
self.causal = causal
|
287 |
+
|
288 |
+
dim_kv = dim_context if dim_context is not None else dim
|
289 |
+
|
290 |
+
self.num_heads = dim // dim_heads
|
291 |
+
self.kv_heads = dim_kv // dim_heads
|
292 |
+
|
293 |
+
if dim_context is not None:
|
294 |
+
self.to_q = nn.Linear(dim, dim, bias=False)
|
295 |
+
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
|
296 |
+
else:
|
297 |
+
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
298 |
+
|
299 |
+
self.to_out = nn.Linear(dim, dim, bias=False)
|
300 |
+
|
301 |
+
if zero_init_output:
|
302 |
+
nn.init.zeros_(self.to_out.weight)
|
303 |
+
|
304 |
+
self.qk_norm = qk_norm
|
305 |
+
|
306 |
+
if self.qk_norm == "ln":
|
307 |
+
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
308 |
+
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
309 |
+
|
310 |
+
# Using 1d neighborhood attention
|
311 |
+
self.natten_kernel_size = natten_kernel_size
|
312 |
+
if natten_kernel_size is not None:
|
313 |
+
return
|
314 |
+
|
315 |
+
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
316 |
+
|
317 |
+
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
|
318 |
+
# pdb.set_trace()
|
319 |
+
self.use_fa_flash = False
|
320 |
+
|
321 |
+
self.sdp_kwargs = dict(
|
322 |
+
enable_flash = True,
|
323 |
+
enable_math = True,
|
324 |
+
enable_mem_efficient = True
|
325 |
+
)
|
326 |
+
|
327 |
+
def flash_attn(
|
328 |
+
self,
|
329 |
+
q,
|
330 |
+
k,
|
331 |
+
v,
|
332 |
+
mask = None,
|
333 |
+
causal = None
|
334 |
+
):
|
335 |
+
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
|
336 |
+
kv_heads = k.shape[1]
|
337 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
338 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
339 |
+
|
340 |
+
if heads != kv_heads:
|
341 |
+
# Repeat interleave kv_heads to match q_heads
|
342 |
+
heads_per_kv_head = heads // kv_heads
|
343 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
344 |
+
|
345 |
+
if k.ndim == 3:
|
346 |
+
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
347 |
+
|
348 |
+
if v.ndim == 3:
|
349 |
+
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
350 |
+
|
351 |
+
causal = self.causal if causal is None else causal
|
352 |
+
|
353 |
+
if q_len == 1 and causal:
|
354 |
+
causal = False
|
355 |
+
|
356 |
+
if mask is not None:
|
357 |
+
assert mask.ndim == 4
|
358 |
+
mask = mask.expand(batch, heads, q_len, k_len)
|
359 |
+
|
360 |
+
# handle kv cache - this should be bypassable in updated flash attention 2
|
361 |
+
|
362 |
+
if k_len > q_len and causal:
|
363 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
364 |
+
if mask is None:
|
365 |
+
mask = ~causal_mask
|
366 |
+
else:
|
367 |
+
mask = mask & ~causal_mask
|
368 |
+
causal = False
|
369 |
+
|
370 |
+
# manually handle causal mask, if another mask was given
|
371 |
+
|
372 |
+
row_is_entirely_masked = None
|
373 |
+
|
374 |
+
if mask is not None and causal:
|
375 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
376 |
+
mask = mask & ~causal_mask
|
377 |
+
|
378 |
+
# protect against an entire row being masked out
|
379 |
+
|
380 |
+
row_is_entirely_masked = ~mask.any(dim = -1)
|
381 |
+
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
382 |
+
|
383 |
+
causal = False
|
384 |
+
|
385 |
+
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
|
386 |
+
out = F.scaled_dot_product_attention(
|
387 |
+
q, k, v,
|
388 |
+
attn_mask = mask,
|
389 |
+
is_causal = causal
|
390 |
+
)
|
391 |
+
|
392 |
+
# for a row that is entirely masked out, should zero out the output of that row token
|
393 |
+
|
394 |
+
if row_is_entirely_masked is not None:
|
395 |
+
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
396 |
+
|
397 |
+
return out
|
398 |
+
|
399 |
+
def forward(
|
400 |
+
self,
|
401 |
+
x,
|
402 |
+
context = None,
|
403 |
+
mask = None,
|
404 |
+
context_mask = None,
|
405 |
+
rotary_pos_emb = None,
|
406 |
+
causal = None
|
407 |
+
):
|
408 |
+
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
409 |
+
|
410 |
+
kv_input = context if has_context else x
|
411 |
+
|
412 |
+
if hasattr(self, 'to_q'):
|
413 |
+
# Use separate linear projections for q and k/v
|
414 |
+
q = self.to_q(x)
|
415 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
416 |
+
|
417 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
418 |
+
|
419 |
+
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
|
420 |
+
else:
|
421 |
+
# Use fused linear projection
|
422 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
423 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
424 |
+
|
425 |
+
# Normalize q and k for cosine sim attention
|
426 |
+
if self.qk_norm == "l2":
|
427 |
+
q = F.normalize(q, dim=-1)
|
428 |
+
k = F.normalize(k, dim=-1)
|
429 |
+
elif self.qk_norm == "ln":
|
430 |
+
q = self.q_norm(q)
|
431 |
+
k = self.k_norm(k)
|
432 |
+
|
433 |
+
if rotary_pos_emb is not None and not has_context:
|
434 |
+
freqs, _ = rotary_pos_emb
|
435 |
+
|
436 |
+
q_dtype = q.dtype
|
437 |
+
k_dtype = k.dtype
|
438 |
+
|
439 |
+
q = q.to(torch.float32)
|
440 |
+
k = k.to(torch.float32)
|
441 |
+
freqs = freqs.to(torch.float32)
|
442 |
+
|
443 |
+
q = apply_rotary_pos_emb(q, freqs)
|
444 |
+
k = apply_rotary_pos_emb(k, freqs)
|
445 |
+
|
446 |
+
q = q.to(q_dtype)
|
447 |
+
k = k.to(k_dtype)
|
448 |
+
|
449 |
+
input_mask = context_mask
|
450 |
+
|
451 |
+
if input_mask is None and not has_context:
|
452 |
+
input_mask = mask
|
453 |
+
|
454 |
+
# determine masking
|
455 |
+
masks = []
|
456 |
+
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
457 |
+
|
458 |
+
if input_mask is not None:
|
459 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
460 |
+
masks.append(~input_mask)
|
461 |
+
|
462 |
+
# Other masks will be added here later
|
463 |
+
|
464 |
+
if len(masks) > 0:
|
465 |
+
final_attn_mask = ~or_reduce(masks)
|
466 |
+
|
467 |
+
n, device = q.shape[-2], q.device
|
468 |
+
|
469 |
+
causal = self.causal if causal is None else causal
|
470 |
+
|
471 |
+
if n == 1 and causal:
|
472 |
+
causal = False
|
473 |
+
|
474 |
+
if self.natten_kernel_size is not None:
|
475 |
+
if natten is None:
|
476 |
+
raise ImportError('natten not installed, please install natten to use neighborhood attention')
|
477 |
+
|
478 |
+
dtype_in = q.dtype
|
479 |
+
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
|
480 |
+
|
481 |
+
attn = natten.functional.natten1dqk(q, k, kernel_size = self.natten_kernel_size, dilation=1)
|
482 |
+
|
483 |
+
if final_attn_mask is not None:
|
484 |
+
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
|
485 |
+
|
486 |
+
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
487 |
+
|
488 |
+
out = natten.functional.natten1dav(attn, v, kernel_size = self.natten_kernel_size, dilation=1).to(dtype_in)
|
489 |
+
|
490 |
+
# Prioritize Flash Attention 2
|
491 |
+
elif self.use_fa_flash:
|
492 |
+
# pdb.set_trace()
|
493 |
+
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
|
494 |
+
# Flash Attention 2 requires FP16 inputs
|
495 |
+
fa_dtype_in = q.dtype
|
496 |
+
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
|
497 |
+
|
498 |
+
out = flash_attn_func(q, k, v, causal = causal)
|
499 |
+
|
500 |
+
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
|
501 |
+
|
502 |
+
# Fall back to PyTorch implementation
|
503 |
+
elif self.use_pt_flash:
|
504 |
+
out = self.flash_attn(q, k, v, causal = causal, mask = final_attn_mask)
|
505 |
+
|
506 |
+
else:
|
507 |
+
# Fall back to custom implementation
|
508 |
+
|
509 |
+
if h != kv_h:
|
510 |
+
# Repeat interleave kv_heads to match q_heads
|
511 |
+
heads_per_kv_head = h // kv_h
|
512 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
513 |
+
|
514 |
+
scale = 1. / (q.shape[-1] ** 0.5)
|
515 |
+
|
516 |
+
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
517 |
+
|
518 |
+
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
519 |
+
|
520 |
+
i, j, dtype = *dots.shape[-2:], dots.dtype
|
521 |
+
|
522 |
+
mask_value = -torch.finfo(dots.dtype).max
|
523 |
+
|
524 |
+
if final_attn_mask is not None:
|
525 |
+
dots = dots.masked_fill(~final_attn_mask, mask_value)
|
526 |
+
|
527 |
+
if causal:
|
528 |
+
causal_mask = self.create_causal_mask(i, j, device = device)
|
529 |
+
dots = dots.masked_fill(causal_mask, mask_value)
|
530 |
+
|
531 |
+
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
|
532 |
+
attn = attn.type(dtype)
|
533 |
+
|
534 |
+
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
535 |
+
|
536 |
+
# merge heads
|
537 |
+
out = rearrange(out, ' b h n d -> b n (h d)')
|
538 |
+
|
539 |
+
# Communicate between heads
|
540 |
+
|
541 |
+
# with autocast(enabled = False):
|
542 |
+
# out_dtype = out.dtype
|
543 |
+
# out = out.to(torch.float32)
|
544 |
+
# out = self.to_out(out).to(out_dtype)
|
545 |
+
out = self.to_out(out)
|
546 |
+
|
547 |
+
if mask is not None:
|
548 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
549 |
+
out = out.masked_fill(~mask, 0.)
|
550 |
+
|
551 |
+
return out
|
552 |
+
|
553 |
+
class ConformerModule(nn.Module):
|
554 |
+
def __init__(
|
555 |
+
self,
|
556 |
+
dim,
|
557 |
+
norm_kwargs = {},
|
558 |
+
):
|
559 |
+
|
560 |
+
super().__init__()
|
561 |
+
|
562 |
+
self.dim = dim
|
563 |
+
|
564 |
+
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
565 |
+
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
566 |
+
self.glu = GLU(dim, dim, nn.SiLU())
|
567 |
+
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
568 |
+
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
569 |
+
self.swish = nn.SiLU()
|
570 |
+
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
571 |
+
|
572 |
+
def forward(self, x):
|
573 |
+
x = self.in_norm(x)
|
574 |
+
x = rearrange(x, 'b n d -> b d n')
|
575 |
+
x = self.pointwise_conv(x)
|
576 |
+
x = rearrange(x, 'b d n -> b n d')
|
577 |
+
x = self.glu(x)
|
578 |
+
x = rearrange(x, 'b n d -> b d n')
|
579 |
+
x = self.depthwise_conv(x)
|
580 |
+
x = rearrange(x, 'b d n -> b n d')
|
581 |
+
x = self.mid_norm(x)
|
582 |
+
x = self.swish(x)
|
583 |
+
x = rearrange(x, 'b n d -> b d n')
|
584 |
+
x = self.pointwise_conv_2(x)
|
585 |
+
x = rearrange(x, 'b d n -> b n d')
|
586 |
+
|
587 |
+
return x
|
588 |
+
|
589 |
+
class TransformerBlock(nn.Module):
|
590 |
+
def __init__(
|
591 |
+
self,
|
592 |
+
dim,
|
593 |
+
dim_heads = 64,
|
594 |
+
cross_attend = False,
|
595 |
+
dim_context = None,
|
596 |
+
global_cond_dim = None,
|
597 |
+
causal = False,
|
598 |
+
zero_init_branch_outputs = True,
|
599 |
+
conformer = False,
|
600 |
+
layer_ix = -1,
|
601 |
+
remove_norms = False,
|
602 |
+
attn_kwargs = {},
|
603 |
+
ff_kwargs = {},
|
604 |
+
norm_kwargs = {}
|
605 |
+
):
|
606 |
+
|
607 |
+
super().__init__()
|
608 |
+
self.dim = dim
|
609 |
+
self.dim_heads = dim_heads
|
610 |
+
self.cross_attend = cross_attend
|
611 |
+
self.dim_context = dim_context
|
612 |
+
self.causal = causal
|
613 |
+
|
614 |
+
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
615 |
+
|
616 |
+
self.self_attn = Attention(
|
617 |
+
dim,
|
618 |
+
dim_heads = dim_heads,
|
619 |
+
causal = causal,
|
620 |
+
zero_init_output=zero_init_branch_outputs,
|
621 |
+
**attn_kwargs
|
622 |
+
)
|
623 |
+
### 2. 主要是这边需要修改
|
624 |
+
if cross_attend:
|
625 |
+
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
626 |
+
self.cross_attn = Attention(
|
627 |
+
dim,
|
628 |
+
dim_heads = dim_heads,
|
629 |
+
dim_context=dim_context,
|
630 |
+
causal = causal,
|
631 |
+
zero_init_output=zero_init_branch_outputs,
|
632 |
+
**attn_kwargs
|
633 |
+
)
|
634 |
+
|
635 |
+
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
636 |
+
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
|
637 |
+
|
638 |
+
self.layer_ix = layer_ix
|
639 |
+
|
640 |
+
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
641 |
+
|
642 |
+
self.global_cond_dim = global_cond_dim
|
643 |
+
|
644 |
+
if global_cond_dim is not None:
|
645 |
+
self.to_scale_shift_gate = nn.Sequential(
|
646 |
+
nn.SiLU(),
|
647 |
+
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
648 |
+
)
|
649 |
+
|
650 |
+
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
651 |
+
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
652 |
+
|
653 |
+
def forward(
|
654 |
+
self,
|
655 |
+
x,
|
656 |
+
context = None,
|
657 |
+
global_cond=None,
|
658 |
+
mask = None,
|
659 |
+
context_mask = None,
|
660 |
+
rotary_pos_emb = None
|
661 |
+
):
|
662 |
+
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
663 |
+
|
664 |
+
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
|
665 |
+
|
666 |
+
# self-attention with adaLN
|
667 |
+
residual = x
|
668 |
+
x = self.pre_norm(x)
|
669 |
+
x = x * (1 + scale_self) + shift_self
|
670 |
+
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
671 |
+
x = x * torch.sigmoid(1 - gate_self)
|
672 |
+
x = x + residual
|
673 |
+
|
674 |
+
if context is not None:
|
675 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
676 |
+
|
677 |
+
if self.conformer is not None:
|
678 |
+
x = x + self.conformer(x)
|
679 |
+
|
680 |
+
# feedforward with adaLN
|
681 |
+
residual = x
|
682 |
+
x = self.ff_norm(x)
|
683 |
+
x = x * (1 + scale_ff) + shift_ff
|
684 |
+
x = self.ff(x)
|
685 |
+
x = x * torch.sigmoid(1 - gate_ff)
|
686 |
+
x = x + residual
|
687 |
+
|
688 |
+
else:
|
689 |
+
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
690 |
+
|
691 |
+
if context is not None:
|
692 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
693 |
+
|
694 |
+
if self.conformer is not None:
|
695 |
+
x = x + self.conformer(x)
|
696 |
+
|
697 |
+
x = x + self.ff(self.ff_norm(x))
|
698 |
+
|
699 |
+
return x
|
700 |
+
|
701 |
+
class ContinuousTransformer(nn.Module):
|
702 |
+
def __init__(
|
703 |
+
self,
|
704 |
+
dim,
|
705 |
+
depth,
|
706 |
+
*,
|
707 |
+
dim_in = None,
|
708 |
+
dim_out = None,
|
709 |
+
dim_heads = 64,
|
710 |
+
cross_attend=False,
|
711 |
+
cond_token_dim=None,
|
712 |
+
global_cond_dim=None,
|
713 |
+
causal=False,
|
714 |
+
rotary_pos_emb=True,
|
715 |
+
zero_init_branch_outputs=True,
|
716 |
+
conformer=False,
|
717 |
+
use_sinusoidal_emb=False,
|
718 |
+
use_abs_pos_emb=False,
|
719 |
+
abs_pos_emb_max_length=10000,
|
720 |
+
**kwargs
|
721 |
+
):
|
722 |
+
|
723 |
+
super().__init__()
|
724 |
+
|
725 |
+
self.dim = dim
|
726 |
+
self.depth = depth
|
727 |
+
self.causal = causal
|
728 |
+
self.layers = nn.ModuleList([])
|
729 |
+
|
730 |
+
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
|
731 |
+
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
|
732 |
+
|
733 |
+
if rotary_pos_emb:
|
734 |
+
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
735 |
+
else:
|
736 |
+
self.rotary_pos_emb = None
|
737 |
+
|
738 |
+
self.use_sinusoidal_emb = use_sinusoidal_emb
|
739 |
+
if use_sinusoidal_emb:
|
740 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
741 |
+
|
742 |
+
self.use_abs_pos_emb = use_abs_pos_emb
|
743 |
+
if use_abs_pos_emb:
|
744 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
745 |
+
|
746 |
+
for i in range(depth):
|
747 |
+
self.layers.append(
|
748 |
+
TransformerBlock(
|
749 |
+
dim,
|
750 |
+
dim_heads = dim_heads,
|
751 |
+
cross_attend = cross_attend,
|
752 |
+
dim_context = cond_token_dim,
|
753 |
+
global_cond_dim = global_cond_dim,
|
754 |
+
causal = causal,
|
755 |
+
zero_init_branch_outputs = zero_init_branch_outputs,
|
756 |
+
conformer=conformer,
|
757 |
+
layer_ix=i,
|
758 |
+
**kwargs
|
759 |
+
)
|
760 |
+
)
|
761 |
+
|
762 |
+
def forward(
|
763 |
+
self,
|
764 |
+
x,
|
765 |
+
mask = None,
|
766 |
+
prepend_embeds = None,
|
767 |
+
prepend_mask = None,
|
768 |
+
global_cond = None,
|
769 |
+
return_info = False,
|
770 |
+
**kwargs
|
771 |
+
):
|
772 |
+
batch, seq, device = *x.shape[:2], x.device
|
773 |
+
|
774 |
+
info = {
|
775 |
+
"hidden_states": [],
|
776 |
+
}
|
777 |
+
|
778 |
+
x = self.project_in(x)
|
779 |
+
if prepend_embeds is not None:
|
780 |
+
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
781 |
+
|
782 |
+
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
783 |
+
|
784 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
785 |
+
|
786 |
+
if prepend_mask is not None or mask is not None:
|
787 |
+
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
|
788 |
+
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
|
789 |
+
|
790 |
+
mask = torch.cat((prepend_mask, mask), dim = -1)
|
791 |
+
|
792 |
+
# Attention layers
|
793 |
+
|
794 |
+
if self.rotary_pos_emb is not None:
|
795 |
+
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
796 |
+
else:
|
797 |
+
rotary_pos_emb = None
|
798 |
+
|
799 |
+
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
800 |
+
x = x + self.pos_emb(x)
|
801 |
+
|
802 |
+
# Iterate over the transformer layers
|
803 |
+
for layer in self.layers:
|
804 |
+
#x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
805 |
+
# pdb.set_trace()
|
806 |
+
x = checkpoint(layer, x, mask=mask.bool(),rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
807 |
+
|
808 |
+
if return_info:
|
809 |
+
info["hidden_states"].append(x)
|
810 |
+
|
811 |
+
x = self.project_out(x)
|
812 |
+
|
813 |
+
if return_info:
|
814 |
+
return x, info
|
815 |
+
|
816 |
+
return x
|
cosyvoice/flow/stable/transformer_use_mask.py
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
from functools import reduce, partial
|
3 |
+
from packaging import version
|
4 |
+
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn, einsum
|
10 |
+
from torch.cuda.amp import autocast
|
11 |
+
from typing import Callable, Literal
|
12 |
+
|
13 |
+
try:
|
14 |
+
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
|
15 |
+
except ImportError as e:
|
16 |
+
print(e)
|
17 |
+
print('flash_attn not installed, disabling Flash Attention')
|
18 |
+
flash_attn_kvpacked_func = None
|
19 |
+
flash_attn_func = None
|
20 |
+
|
21 |
+
try:
|
22 |
+
import natten
|
23 |
+
except ImportError:
|
24 |
+
natten = None
|
25 |
+
|
26 |
+
|
27 |
+
def checkpoint(function, *args, **kwargs):
|
28 |
+
kwargs.setdefault("use_reentrant", False)
|
29 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
30 |
+
|
31 |
+
|
32 |
+
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
|
33 |
+
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
|
34 |
+
|
35 |
+
def create_causal_mask(i, j, device):
|
36 |
+
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
|
37 |
+
|
38 |
+
|
39 |
+
def or_reduce(masks):
|
40 |
+
head, *body = masks
|
41 |
+
for rest in body:
|
42 |
+
head = head | rest
|
43 |
+
return head
|
44 |
+
|
45 |
+
|
46 |
+
# positional embeddings
|
47 |
+
|
48 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
49 |
+
def __init__(self, dim, max_seq_len):
|
50 |
+
super().__init__()
|
51 |
+
self.scale = dim ** -0.5
|
52 |
+
self.max_seq_len = max_seq_len
|
53 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
54 |
+
|
55 |
+
def forward(self, x, pos=None, seq_start_pos=None):
|
56 |
+
seq_len, device = x.shape[1], x.device
|
57 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
58 |
+
|
59 |
+
if pos is None:
|
60 |
+
pos = torch.arange(seq_len, device=device)
|
61 |
+
|
62 |
+
if seq_start_pos is not None:
|
63 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min=0)
|
64 |
+
|
65 |
+
pos_emb = self.emb(pos)
|
66 |
+
pos_emb = pos_emb * self.scale
|
67 |
+
return pos_emb
|
68 |
+
|
69 |
+
|
70 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
71 |
+
def __init__(self, dim, theta=10000):
|
72 |
+
super().__init__()
|
73 |
+
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
74 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
75 |
+
|
76 |
+
half_dim = dim // 2
|
77 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
78 |
+
inv_freq = theta ** -freq_seq
|
79 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
80 |
+
|
81 |
+
def forward(self, x, pos=None, seq_start_pos=None):
|
82 |
+
seq_len, device = x.shape[1], x.device
|
83 |
+
|
84 |
+
if pos is None:
|
85 |
+
pos = torch.arange(seq_len, device=device)
|
86 |
+
|
87 |
+
if seq_start_pos is not None:
|
88 |
+
pos = pos - seq_start_pos[..., None]
|
89 |
+
|
90 |
+
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
91 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
92 |
+
return emb * self.scale
|
93 |
+
|
94 |
+
|
95 |
+
class RotaryEmbedding(nn.Module):
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
dim,
|
99 |
+
use_xpos=False,
|
100 |
+
scale_base=512,
|
101 |
+
interpolation_factor=1.,
|
102 |
+
base=10000,
|
103 |
+
base_rescale_factor=1.
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
107 |
+
# has some connection to NTK literature
|
108 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
109 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
110 |
+
|
111 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
112 |
+
self.register_buffer('inv_freq', inv_freq)
|
113 |
+
|
114 |
+
assert interpolation_factor >= 1.
|
115 |
+
self.interpolation_factor = interpolation_factor
|
116 |
+
|
117 |
+
if not use_xpos:
|
118 |
+
self.register_buffer('scale', None)
|
119 |
+
return
|
120 |
+
|
121 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
122 |
+
|
123 |
+
self.scale_base = scale_base
|
124 |
+
self.register_buffer('scale', scale)
|
125 |
+
|
126 |
+
def forward_from_seq_len(self, seq_len):
|
127 |
+
device = self.inv_freq.device
|
128 |
+
|
129 |
+
t = torch.arange(seq_len, device=device)
|
130 |
+
return self.forward(t)
|
131 |
+
|
132 |
+
@autocast(enabled=False)
|
133 |
+
def forward(self, t):
|
134 |
+
device = self.inv_freq.device
|
135 |
+
|
136 |
+
t = t.to(torch.float32)
|
137 |
+
|
138 |
+
t = t / self.interpolation_factor
|
139 |
+
|
140 |
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
141 |
+
freqs = torch.cat((freqs, freqs), dim=-1)
|
142 |
+
|
143 |
+
if self.scale is None:
|
144 |
+
return freqs, 1.
|
145 |
+
|
146 |
+
power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base
|
147 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
148 |
+
scale = torch.cat((scale, scale), dim=-1)
|
149 |
+
|
150 |
+
return freqs, scale
|
151 |
+
|
152 |
+
|
153 |
+
def rotate_half(x):
|
154 |
+
x = rearrange(x, '... (j d) -> ... j d', j=2)
|
155 |
+
x1, x2 = x.unbind(dim=-2)
|
156 |
+
return torch.cat((-x2, x1), dim=-1)
|
157 |
+
|
158 |
+
|
159 |
+
@autocast(enabled=False)
|
160 |
+
def apply_rotary_pos_emb(t, freqs, scale=1):
|
161 |
+
out_dtype = t.dtype
|
162 |
+
|
163 |
+
# cast to float32 if necessary for numerical stability
|
164 |
+
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
165 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
166 |
+
freqs, t = freqs.to(dtype), t.to(dtype)
|
167 |
+
freqs = freqs[-seq_len:, :]
|
168 |
+
|
169 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
170 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
171 |
+
|
172 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
173 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
174 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
175 |
+
|
176 |
+
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
177 |
+
|
178 |
+
return torch.cat((t, t_unrotated), dim=-1)
|
179 |
+
|
180 |
+
|
181 |
+
# norms
|
182 |
+
class LayerNorm(nn.Module):
|
183 |
+
def __init__(self, dim, bias=False, fix_scale=False):
|
184 |
+
"""
|
185 |
+
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
186 |
+
"""
|
187 |
+
super().__init__()
|
188 |
+
|
189 |
+
if fix_scale:
|
190 |
+
self.register_buffer("gamma", torch.ones(dim))
|
191 |
+
else:
|
192 |
+
self.gamma = nn.Parameter(torch.ones(dim))
|
193 |
+
|
194 |
+
if bias:
|
195 |
+
self.beta = nn.Parameter(torch.zeros(dim))
|
196 |
+
else:
|
197 |
+
self.register_buffer("beta", torch.zeros(dim))
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
|
201 |
+
|
202 |
+
|
203 |
+
# feedforward
|
204 |
+
|
205 |
+
class GLU(nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
dim_in,
|
209 |
+
dim_out,
|
210 |
+
activation: Callable,
|
211 |
+
use_conv=False,
|
212 |
+
conv_kernel_size=3,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
self.act = activation
|
216 |
+
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size,
|
217 |
+
padding=(conv_kernel_size // 2))
|
218 |
+
self.use_conv = use_conv
|
219 |
+
|
220 |
+
def forward(self, x):
|
221 |
+
if self.use_conv:
|
222 |
+
x = rearrange(x, 'b n d -> b d n')
|
223 |
+
x = self.proj(x)
|
224 |
+
x = rearrange(x, 'b d n -> b n d')
|
225 |
+
else:
|
226 |
+
x = self.proj(x)
|
227 |
+
|
228 |
+
x, gate = x.chunk(2, dim=-1)
|
229 |
+
return x * self.act(gate)
|
230 |
+
|
231 |
+
|
232 |
+
class FeedForward(nn.Module):
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
dim,
|
236 |
+
dim_out=None,
|
237 |
+
mult=4,
|
238 |
+
no_bias=False,
|
239 |
+
glu=True,
|
240 |
+
use_conv=False,
|
241 |
+
conv_kernel_size=3,
|
242 |
+
zero_init_output=True,
|
243 |
+
):
|
244 |
+
super().__init__()
|
245 |
+
inner_dim = int(dim * mult)
|
246 |
+
|
247 |
+
# Default to SwiGLU
|
248 |
+
|
249 |
+
activation = nn.SiLU()
|
250 |
+
|
251 |
+
dim_out = dim if dim_out is None else dim_out
|
252 |
+
|
253 |
+
if glu:
|
254 |
+
linear_in = GLU(dim, inner_dim, activation)
|
255 |
+
else:
|
256 |
+
linear_in = nn.Sequential(
|
257 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
258 |
+
nn.Linear(dim, inner_dim, bias=not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim,
|
259 |
+
conv_kernel_size, padding=(
|
260 |
+
conv_kernel_size // 2), bias=not no_bias),
|
261 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
262 |
+
activation
|
263 |
+
)
|
264 |
+
|
265 |
+
linear_out = nn.Linear(inner_dim, dim_out, bias=not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out,
|
266 |
+
conv_kernel_size,
|
267 |
+
padding=(
|
268 |
+
conv_kernel_size // 2),
|
269 |
+
bias=not no_bias)
|
270 |
+
|
271 |
+
# init last linear layer to 0
|
272 |
+
if zero_init_output:
|
273 |
+
nn.init.zeros_(linear_out.weight)
|
274 |
+
if not no_bias:
|
275 |
+
nn.init.zeros_(linear_out.bias)
|
276 |
+
|
277 |
+
self.ff = nn.Sequential(
|
278 |
+
linear_in,
|
279 |
+
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
280 |
+
linear_out,
|
281 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
282 |
+
)
|
283 |
+
|
284 |
+
def forward(self, x):
|
285 |
+
return self.ff(x)
|
286 |
+
|
287 |
+
|
288 |
+
class Attention(nn.Module):
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dim,
|
292 |
+
dim_heads=64,
|
293 |
+
dim_context=None,
|
294 |
+
causal=False,
|
295 |
+
zero_init_output=True,
|
296 |
+
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
|
297 |
+
natten_kernel_size=None
|
298 |
+
):
|
299 |
+
super().__init__()
|
300 |
+
self.dim = dim
|
301 |
+
self.dim_heads = dim_heads
|
302 |
+
self.causal = causal
|
303 |
+
|
304 |
+
dim_kv = dim_context if dim_context is not None else dim
|
305 |
+
|
306 |
+
self.num_heads = dim // dim_heads
|
307 |
+
self.kv_heads = dim_kv // dim_heads
|
308 |
+
|
309 |
+
if dim_context is not None:
|
310 |
+
self.to_q = nn.Linear(dim, dim, bias=False)
|
311 |
+
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
|
312 |
+
else:
|
313 |
+
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
314 |
+
|
315 |
+
self.to_out = nn.Linear(dim, dim, bias=False)
|
316 |
+
|
317 |
+
if zero_init_output:
|
318 |
+
nn.init.zeros_(self.to_out.weight)
|
319 |
+
|
320 |
+
self.qk_norm = qk_norm
|
321 |
+
|
322 |
+
if self.qk_norm == "ln":
|
323 |
+
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
324 |
+
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
325 |
+
|
326 |
+
# Using 1d neighborhood attention
|
327 |
+
self.natten_kernel_size = natten_kernel_size
|
328 |
+
if natten_kernel_size is not None:
|
329 |
+
return
|
330 |
+
|
331 |
+
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
332 |
+
|
333 |
+
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
|
334 |
+
# pdb.set_trace()
|
335 |
+
self.use_fa_flash = False
|
336 |
+
|
337 |
+
self.sdp_kwargs = dict(
|
338 |
+
enable_flash=True,
|
339 |
+
enable_math=True,
|
340 |
+
enable_mem_efficient=True
|
341 |
+
)
|
342 |
+
|
343 |
+
def flash_attn(
|
344 |
+
self,
|
345 |
+
q,
|
346 |
+
k,
|
347 |
+
v,
|
348 |
+
mask=None,
|
349 |
+
causal=None
|
350 |
+
):
|
351 |
+
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
|
352 |
+
kv_heads = k.shape[1]
|
353 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
354 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
355 |
+
|
356 |
+
if heads != kv_heads:
|
357 |
+
# Repeat interleave kv_heads to match q_heads
|
358 |
+
heads_per_kv_head = heads // kv_heads
|
359 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
|
360 |
+
|
361 |
+
if k.ndim == 3:
|
362 |
+
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
363 |
+
|
364 |
+
if v.ndim == 3:
|
365 |
+
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
366 |
+
|
367 |
+
causal = self.causal if causal is None else causal
|
368 |
+
|
369 |
+
if q_len == 1 and causal:
|
370 |
+
causal = False
|
371 |
+
|
372 |
+
if mask is not None:
|
373 |
+
assert mask.ndim == 4
|
374 |
+
mask = mask.expand(batch, heads, q_len, k_len)
|
375 |
+
|
376 |
+
assert causal
|
377 |
+
# handle kv cache - this should be bypassable in updated flash attention 2
|
378 |
+
if k_len > q_len and causal:
|
379 |
+
causal_mask = create_causal_mask(q_len, k_len, device=device)
|
380 |
+
if mask is None:
|
381 |
+
mask = ~causal_mask
|
382 |
+
else:
|
383 |
+
mask = mask & ~causal_mask
|
384 |
+
causal = False
|
385 |
+
|
386 |
+
# manually handle causal mask, if another mask was given
|
387 |
+
|
388 |
+
row_is_entirely_masked = None
|
389 |
+
|
390 |
+
if mask is not None and causal:
|
391 |
+
causal_mask = create_causal_mask(q_len, k_len, device=device)
|
392 |
+
mask = mask & ~causal_mask
|
393 |
+
|
394 |
+
# protect against an entire row being masked out
|
395 |
+
|
396 |
+
row_is_entirely_masked = ~mask.any(dim=-1)
|
397 |
+
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
398 |
+
|
399 |
+
causal = False
|
400 |
+
|
401 |
+
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
|
402 |
+
out = F.scaled_dot_product_attention(
|
403 |
+
q, k, v,
|
404 |
+
attn_mask=mask,
|
405 |
+
is_causal=causal
|
406 |
+
)
|
407 |
+
|
408 |
+
# for a row that is entirely masked out, should zero out the output of that row token
|
409 |
+
|
410 |
+
if row_is_entirely_masked is not None:
|
411 |
+
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
412 |
+
|
413 |
+
return out
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self,
|
417 |
+
x,
|
418 |
+
context=None,
|
419 |
+
mask=None,
|
420 |
+
context_mask=None,
|
421 |
+
rotary_pos_emb=None,
|
422 |
+
causal=None
|
423 |
+
):
|
424 |
+
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
425 |
+
|
426 |
+
kv_input = context if has_context else x
|
427 |
+
|
428 |
+
if hasattr(self, 'to_q'):
|
429 |
+
# Use separate linear projections for q and k/v
|
430 |
+
q = self.to_q(x)
|
431 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
|
432 |
+
|
433 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
434 |
+
|
435 |
+
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=kv_h), (k, v))
|
436 |
+
else:
|
437 |
+
# Use fused linear projection
|
438 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
439 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
440 |
+
|
441 |
+
# Normalize q and k for cosine sim attention
|
442 |
+
if self.qk_norm == "l2":
|
443 |
+
q = F.normalize(q, dim=-1)
|
444 |
+
k = F.normalize(k, dim=-1)
|
445 |
+
elif self.qk_norm == "ln":
|
446 |
+
q = self.q_norm(q)
|
447 |
+
k = self.k_norm(k)
|
448 |
+
|
449 |
+
if rotary_pos_emb is not None and not has_context:
|
450 |
+
freqs, _ = rotary_pos_emb
|
451 |
+
|
452 |
+
q_dtype = q.dtype
|
453 |
+
k_dtype = k.dtype
|
454 |
+
|
455 |
+
q = q.to(torch.float32)
|
456 |
+
k = k.to(torch.float32)
|
457 |
+
freqs = freqs.to(torch.float32)
|
458 |
+
|
459 |
+
q = apply_rotary_pos_emb(q, freqs)
|
460 |
+
k = apply_rotary_pos_emb(k, freqs)
|
461 |
+
|
462 |
+
q = q.to(q_dtype)
|
463 |
+
k = k.to(k_dtype)
|
464 |
+
|
465 |
+
input_mask = context_mask
|
466 |
+
|
467 |
+
if input_mask is None and not has_context:
|
468 |
+
input_mask = mask
|
469 |
+
|
470 |
+
# determine masking
|
471 |
+
masks = []
|
472 |
+
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
473 |
+
|
474 |
+
if input_mask is not None:
|
475 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
476 |
+
masks.append(~input_mask)
|
477 |
+
|
478 |
+
# Other masks will be added here later
|
479 |
+
|
480 |
+
if len(masks) > 0:
|
481 |
+
final_attn_mask = ~or_reduce(masks)
|
482 |
+
|
483 |
+
n, device = q.shape[-2], q.device
|
484 |
+
|
485 |
+
causal = self.causal if causal is None else causal
|
486 |
+
|
487 |
+
if n == 1 and causal:
|
488 |
+
causal = False
|
489 |
+
|
490 |
+
if self.natten_kernel_size is not None:
|
491 |
+
if natten is None:
|
492 |
+
raise ImportError('natten not installed, please install natten to use neighborhood attention')
|
493 |
+
|
494 |
+
dtype_in = q.dtype
|
495 |
+
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
|
496 |
+
|
497 |
+
attn = natten.functional.natten1dqk(q, k, kernel_size=self.natten_kernel_size, dilation=1)
|
498 |
+
|
499 |
+
if final_attn_mask is not None:
|
500 |
+
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
|
501 |
+
|
502 |
+
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
503 |
+
|
504 |
+
out = natten.functional.natten1dav(attn, v, kernel_size=self.natten_kernel_size, dilation=1).to(dtype_in)
|
505 |
+
|
506 |
+
# Prioritize Flash Attention 2
|
507 |
+
elif self.use_fa_flash:
|
508 |
+
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
|
509 |
+
# Flash Attention 2 requires FP16 inputs
|
510 |
+
fa_dtype_in = q.dtype
|
511 |
+
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
|
512 |
+
|
513 |
+
out = flash_attn_func(q, k, v, causal=causal)
|
514 |
+
|
515 |
+
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
|
516 |
+
|
517 |
+
# Fall back to PyTorch implementation
|
518 |
+
elif self.use_pt_flash:
|
519 |
+
# causal=False
|
520 |
+
# final_attn_mask:[64, 1, 1, 348]
|
521 |
+
out = self.flash_attn(q, k, v, causal=True, mask=final_attn_mask)
|
522 |
+
|
523 |
+
else:
|
524 |
+
# Fall back to custom implementation
|
525 |
+
|
526 |
+
if h != kv_h:
|
527 |
+
# Repeat interleave kv_heads to match q_heads
|
528 |
+
heads_per_kv_head = h // kv_h
|
529 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
|
530 |
+
|
531 |
+
scale = 1. / (q.shape[-1] ** 0.5)
|
532 |
+
|
533 |
+
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
534 |
+
|
535 |
+
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
536 |
+
|
537 |
+
i, j, dtype = *dots.shape[-2:], dots.dtype
|
538 |
+
|
539 |
+
mask_value = -torch.finfo(dots.dtype).max
|
540 |
+
|
541 |
+
if final_attn_mask is not None:
|
542 |
+
dots = dots.masked_fill(~final_attn_mask, mask_value)
|
543 |
+
|
544 |
+
if causal:
|
545 |
+
causal_mask = create_causal_mask(i, j, device=device)
|
546 |
+
dots = dots.masked_fill(causal_mask, mask_value)
|
547 |
+
|
548 |
+
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
|
549 |
+
attn = attn.type(dtype)
|
550 |
+
|
551 |
+
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
552 |
+
|
553 |
+
# merge heads
|
554 |
+
out = rearrange(out, ' b h n d -> b n (h d)')
|
555 |
+
|
556 |
+
# Communicate between heads
|
557 |
+
|
558 |
+
# with autocast(enabled = False):
|
559 |
+
# out_dtype = out.dtype
|
560 |
+
# out = out.to(torch.float32)
|
561 |
+
# out = self.to_out(out).to(out_dtype)
|
562 |
+
out = self.to_out(out)
|
563 |
+
|
564 |
+
if mask is not None:
|
565 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
566 |
+
out = out.masked_fill(~mask, 0.)
|
567 |
+
|
568 |
+
return out
|
569 |
+
|
570 |
+
|
571 |
+
class ConformerModule(nn.Module):
|
572 |
+
def __init__(
|
573 |
+
self,
|
574 |
+
dim,
|
575 |
+
norm_kwargs={},
|
576 |
+
):
|
577 |
+
super().__init__()
|
578 |
+
|
579 |
+
self.dim = dim
|
580 |
+
|
581 |
+
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
582 |
+
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
583 |
+
self.glu = GLU(dim, dim, nn.SiLU())
|
584 |
+
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
585 |
+
self.mid_norm = LayerNorm(dim,
|
586 |
+
**norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
587 |
+
self.swish = nn.SiLU()
|
588 |
+
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
589 |
+
|
590 |
+
def forward(self, x):
|
591 |
+
x = self.in_norm(x)
|
592 |
+
x = rearrange(x, 'b n d -> b d n')
|
593 |
+
x = self.pointwise_conv(x)
|
594 |
+
x = rearrange(x, 'b d n -> b n d')
|
595 |
+
x = self.glu(x)
|
596 |
+
x = rearrange(x, 'b n d -> b d n')
|
597 |
+
x = self.depthwise_conv(x)
|
598 |
+
x = rearrange(x, 'b d n -> b n d')
|
599 |
+
x = self.mid_norm(x)
|
600 |
+
x = self.swish(x)
|
601 |
+
x = rearrange(x, 'b n d -> b d n')
|
602 |
+
x = self.pointwise_conv_2(x)
|
603 |
+
x = rearrange(x, 'b d n -> b n d')
|
604 |
+
|
605 |
+
return x
|
606 |
+
|
607 |
+
|
608 |
+
class TransformerBlock(nn.Module):
|
609 |
+
def __init__(
|
610 |
+
self,
|
611 |
+
dim,
|
612 |
+
dim_heads=64,
|
613 |
+
cross_attend=False,
|
614 |
+
dim_context=None,
|
615 |
+
global_cond_dim=None,
|
616 |
+
causal=False,
|
617 |
+
zero_init_branch_outputs=True,
|
618 |
+
conformer=False,
|
619 |
+
layer_ix=-1,
|
620 |
+
remove_norms=False,
|
621 |
+
attn_kwargs={},
|
622 |
+
ff_kwargs={},
|
623 |
+
norm_kwargs={}
|
624 |
+
):
|
625 |
+
|
626 |
+
super().__init__()
|
627 |
+
self.dim = dim
|
628 |
+
self.dim_heads = dim_heads
|
629 |
+
self.cross_attend = cross_attend
|
630 |
+
self.dim_context = dim_context
|
631 |
+
self.causal = causal
|
632 |
+
|
633 |
+
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
634 |
+
|
635 |
+
self.self_attn = Attention(
|
636 |
+
dim,
|
637 |
+
dim_heads=dim_heads,
|
638 |
+
causal=causal,
|
639 |
+
zero_init_output=zero_init_branch_outputs,
|
640 |
+
**attn_kwargs
|
641 |
+
)
|
642 |
+
### 2. 主要是这边需要修改
|
643 |
+
if cross_attend:
|
644 |
+
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
645 |
+
self.cross_attn = Attention(
|
646 |
+
dim,
|
647 |
+
dim_heads=dim_heads,
|
648 |
+
dim_context=dim_context,
|
649 |
+
causal=causal,
|
650 |
+
zero_init_output=zero_init_branch_outputs,
|
651 |
+
**attn_kwargs
|
652 |
+
)
|
653 |
+
|
654 |
+
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
655 |
+
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
|
656 |
+
|
657 |
+
self.layer_ix = layer_ix
|
658 |
+
|
659 |
+
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
660 |
+
|
661 |
+
self.global_cond_dim = global_cond_dim
|
662 |
+
|
663 |
+
if global_cond_dim is not None:
|
664 |
+
self.to_scale_shift_gate = nn.Sequential(
|
665 |
+
nn.SiLU(),
|
666 |
+
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
667 |
+
)
|
668 |
+
|
669 |
+
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
670 |
+
# nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
671 |
+
|
672 |
+
def forward(
|
673 |
+
self,
|
674 |
+
x,
|
675 |
+
context=None,
|
676 |
+
global_cond=None,
|
677 |
+
mask=None,
|
678 |
+
context_mask=None,
|
679 |
+
rotary_pos_emb=None
|
680 |
+
):
|
681 |
+
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
682 |
+
|
683 |
+
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(
|
684 |
+
global_cond).unsqueeze(1).chunk(6, dim=-1)
|
685 |
+
|
686 |
+
# self-attention with adaLN
|
687 |
+
residual = x
|
688 |
+
x = self.pre_norm(x)
|
689 |
+
x = x * (1 + scale_self) + shift_self
|
690 |
+
x = self.self_attn(x, mask=mask, rotary_pos_emb=rotary_pos_emb)
|
691 |
+
x = x * torch.sigmoid(1 - gate_self)
|
692 |
+
x = x + residual
|
693 |
+
|
694 |
+
if context is not None:
|
695 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
|
696 |
+
|
697 |
+
if self.conformer is not None:
|
698 |
+
x = x + self.conformer(x)
|
699 |
+
|
700 |
+
# feedforward with adaLN
|
701 |
+
residual = x
|
702 |
+
x = self.ff_norm(x)
|
703 |
+
x = x * (1 + scale_ff) + shift_ff
|
704 |
+
x = self.ff(x)
|
705 |
+
x = x * torch.sigmoid(1 - gate_ff)
|
706 |
+
x = x + residual
|
707 |
+
|
708 |
+
else:
|
709 |
+
x = x + self.self_attn(self.pre_norm(x), mask=mask, rotary_pos_emb=rotary_pos_emb)
|
710 |
+
|
711 |
+
if context is not None:
|
712 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
|
713 |
+
|
714 |
+
if self.conformer is not None:
|
715 |
+
x = x + self.conformer(x)
|
716 |
+
|
717 |
+
x = x + self.ff(self.ff_norm(x))
|
718 |
+
|
719 |
+
return x
|
720 |
+
|
721 |
+
|
722 |
+
class ContinuousTransformer(nn.Module):
|
723 |
+
def __init__(
|
724 |
+
self,
|
725 |
+
dim,
|
726 |
+
depth,
|
727 |
+
*,
|
728 |
+
dim_in=None,
|
729 |
+
dim_out=None,
|
730 |
+
dim_heads=64,
|
731 |
+
cross_attend=False,
|
732 |
+
cond_token_dim=None,
|
733 |
+
global_cond_dim=None,
|
734 |
+
causal=False,
|
735 |
+
rotary_pos_emb=True,
|
736 |
+
zero_init_branch_outputs=True,
|
737 |
+
conformer=False,
|
738 |
+
use_sinusoidal_emb=False,
|
739 |
+
use_abs_pos_emb=False,
|
740 |
+
abs_pos_emb_max_length=10000,
|
741 |
+
**kwargs
|
742 |
+
):
|
743 |
+
|
744 |
+
super().__init__()
|
745 |
+
|
746 |
+
self.dim = dim
|
747 |
+
self.depth = depth
|
748 |
+
self.causal = causal
|
749 |
+
self.layers = nn.ModuleList([])
|
750 |
+
|
751 |
+
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
|
752 |
+
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
|
753 |
+
|
754 |
+
if rotary_pos_emb:
|
755 |
+
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
756 |
+
else:
|
757 |
+
self.rotary_pos_emb = None
|
758 |
+
|
759 |
+
self.use_sinusoidal_emb = use_sinusoidal_emb
|
760 |
+
if use_sinusoidal_emb:
|
761 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
762 |
+
|
763 |
+
self.use_abs_pos_emb = use_abs_pos_emb
|
764 |
+
if use_abs_pos_emb:
|
765 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
766 |
+
|
767 |
+
for i in range(depth):
|
768 |
+
self.layers.append(
|
769 |
+
TransformerBlock(
|
770 |
+
dim,
|
771 |
+
dim_heads=dim_heads,
|
772 |
+
cross_attend=cross_attend,
|
773 |
+
dim_context=cond_token_dim,
|
774 |
+
global_cond_dim=global_cond_dim,
|
775 |
+
causal=causal,
|
776 |
+
zero_init_branch_outputs=zero_init_branch_outputs,
|
777 |
+
conformer=conformer,
|
778 |
+
layer_ix=i,
|
779 |
+
**kwargs
|
780 |
+
)
|
781 |
+
)
|
782 |
+
|
783 |
+
def forward(
|
784 |
+
self,
|
785 |
+
x,
|
786 |
+
mask=None,
|
787 |
+
prepend_embeds=None,
|
788 |
+
prepend_mask=None,
|
789 |
+
global_cond=None,
|
790 |
+
return_info=False,
|
791 |
+
**kwargs
|
792 |
+
):
|
793 |
+
batch, seq, device = *x.shape[:2], x.device
|
794 |
+
|
795 |
+
info = {
|
796 |
+
"hidden_states": [],
|
797 |
+
}
|
798 |
+
|
799 |
+
x = self.project_in(x)
|
800 |
+
if prepend_embeds is not None:
|
801 |
+
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
802 |
+
|
803 |
+
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
804 |
+
|
805 |
+
x = torch.cat((prepend_embeds, x), dim=-2)
|
806 |
+
|
807 |
+
if prepend_mask is not None or mask is not None:
|
808 |
+
mask = mask if mask is not None else torch.ones((batch, seq), device=device, dtype=torch.bool)
|
809 |
+
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length),
|
810 |
+
device=device, dtype=torch.bool)
|
811 |
+
|
812 |
+
mask = torch.cat((prepend_mask, mask), dim=-1)
|
813 |
+
|
814 |
+
# Attention layers
|
815 |
+
|
816 |
+
if self.rotary_pos_emb is not None:
|
817 |
+
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
818 |
+
else:
|
819 |
+
rotary_pos_emb = None
|
820 |
+
|
821 |
+
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
822 |
+
x = x + self.pos_emb(x)
|
823 |
+
|
824 |
+
# Iterate over the transformer layers
|
825 |
+
mask = self.refine_mask(mask)
|
826 |
+
for layer in self.layers:
|
827 |
+
# x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
828 |
+
# pdb.set_trace()
|
829 |
+
x = checkpoint(layer, x, mask=mask.bool(), rotary_pos_emb=rotary_pos_emb, global_cond=global_cond, **kwargs)
|
830 |
+
|
831 |
+
if return_info:
|
832 |
+
info["hidden_states"].append(x)
|
833 |
+
|
834 |
+
x = self.project_out(x)
|
835 |
+
|
836 |
+
if return_info:
|
837 |
+
return x, info
|
838 |
+
|
839 |
+
return x
|
840 |
+
|
841 |
+
def refine_mask(self, mask):
|
842 |
+
return mask
|
843 |
+
# pdb.set_trace()
|
844 |
+
# mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1)
|
845 |
+
# return mask
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn.utils import weight_norm
|
17 |
+
|
18 |
+
|
19 |
+
class ConvRNNF0Predictor(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
num_class: int = 1,
|
22 |
+
in_channels: int = 80,
|
23 |
+
cond_channels: int = 512
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.num_class = num_class
|
28 |
+
self.condnet = nn.Sequential(
|
29 |
+
weight_norm(
|
30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
31 |
+
),
|
32 |
+
nn.ELU(),
|
33 |
+
weight_norm(
|
34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
35 |
+
),
|
36 |
+
nn.ELU(),
|
37 |
+
weight_norm(
|
38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
39 |
+
),
|
40 |
+
nn.ELU(),
|
41 |
+
weight_norm(
|
42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
43 |
+
),
|
44 |
+
nn.ELU(),
|
45 |
+
weight_norm(
|
46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
47 |
+
),
|
48 |
+
nn.ELU(),
|
49 |
+
)
|
50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
x = self.condnet(x)
|
54 |
+
x = x.transpose(1, 2)
|
55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
import typing as tp
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
from torch.nn.utils import weight_norm
|
27 |
+
from torch.distributions.uniform import Uniform
|
28 |
+
|
29 |
+
from cosyvoice.transformer.activation import Snake
|
30 |
+
from cosyvoice.utils.common import get_padding
|
31 |
+
from cosyvoice.utils.common import init_weights
|
32 |
+
|
33 |
+
|
34 |
+
"""hifigan based generator implementation.
|
35 |
+
|
36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
38 |
+
https://github.com/NVIDIA/BigVGAN
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
class ResBlock(torch.nn.Module):
|
44 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
channels: int = 512,
|
48 |
+
kernel_size: int = 3,
|
49 |
+
dilations: tp.List[int] = [1, 3, 5],
|
50 |
+
):
|
51 |
+
super(ResBlock, self).__init__()
|
52 |
+
self.convs1 = nn.ModuleList()
|
53 |
+
self.convs2 = nn.ModuleList()
|
54 |
+
|
55 |
+
for dilation in dilations:
|
56 |
+
self.convs1.append(
|
57 |
+
weight_norm(
|
58 |
+
Conv1d(
|
59 |
+
channels,
|
60 |
+
channels,
|
61 |
+
kernel_size,
|
62 |
+
1,
|
63 |
+
dilation=dilation,
|
64 |
+
padding=get_padding(kernel_size, dilation)
|
65 |
+
)
|
66 |
+
)
|
67 |
+
)
|
68 |
+
self.convs2.append(
|
69 |
+
weight_norm(
|
70 |
+
Conv1d(
|
71 |
+
channels,
|
72 |
+
channels,
|
73 |
+
kernel_size,
|
74 |
+
1,
|
75 |
+
dilation=1,
|
76 |
+
padding=get_padding(kernel_size, 1)
|
77 |
+
)
|
78 |
+
)
|
79 |
+
)
|
80 |
+
self.convs1.apply(init_weights)
|
81 |
+
self.convs2.apply(init_weights)
|
82 |
+
self.activations1 = nn.ModuleList([
|
83 |
+
Snake(channels, alpha_logscale=False)
|
84 |
+
for _ in range(len(self.convs1))
|
85 |
+
])
|
86 |
+
self.activations2 = nn.ModuleList([
|
87 |
+
Snake(channels, alpha_logscale=False)
|
88 |
+
for _ in range(len(self.convs2))
|
89 |
+
])
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
92 |
+
for idx in range(len(self.convs1)):
|
93 |
+
xt = self.activations1[idx](x)
|
94 |
+
xt = self.convs1[idx](xt)
|
95 |
+
xt = self.activations2[idx](xt)
|
96 |
+
xt = self.convs2[idx](xt)
|
97 |
+
x = xt + x
|
98 |
+
return x
|
99 |
+
|
100 |
+
def remove_weight_norm(self):
|
101 |
+
for idx in range(len(self.convs1)):
|
102 |
+
remove_weight_norm(self.convs1[idx])
|
103 |
+
remove_weight_norm(self.convs2[idx])
|
104 |
+
|
105 |
+
|
106 |
+
class SineGen(torch.nn.Module):
|
107 |
+
""" Definition of sine generator
|
108 |
+
SineGen(samp_rate, harmonic_num = 0,
|
109 |
+
sine_amp = 0.1, noise_std = 0.003,
|
110 |
+
voiced_threshold = 0,
|
111 |
+
flag_for_pulse=False)
|
112 |
+
samp_rate: sampling rate in Hz
|
113 |
+
harmonic_num: number of harmonic overtones (default 0)
|
114 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
115 |
+
noise_std: std of Gaussian noise (default 0.003)
|
116 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
117 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
118 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
119 |
+
segment is always sin(np.pi) or cos(0)
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
123 |
+
sine_amp=0.1, noise_std=0.003,
|
124 |
+
voiced_threshold=0):
|
125 |
+
super(SineGen, self).__init__()
|
126 |
+
self.sine_amp = sine_amp
|
127 |
+
self.noise_std = noise_std
|
128 |
+
self.harmonic_num = harmonic_num
|
129 |
+
self.sampling_rate = samp_rate
|
130 |
+
self.voiced_threshold = voiced_threshold
|
131 |
+
|
132 |
+
def _f02uv(self, f0):
|
133 |
+
# generate uv signal
|
134 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
135 |
+
return uv
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def forward(self, f0):
|
139 |
+
"""
|
140 |
+
:param f0: [B, 1, sample_len], Hz
|
141 |
+
:return: [B, 1, sample_len]
|
142 |
+
"""
|
143 |
+
|
144 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
145 |
+
for i in range(self.harmonic_num + 1):
|
146 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
147 |
+
|
148 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
149 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
150 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
151 |
+
phase_vec[:, 0, :] = 0
|
152 |
+
|
153 |
+
# generate sine waveforms
|
154 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
155 |
+
|
156 |
+
# generate uv signal
|
157 |
+
uv = self._f02uv(f0)
|
158 |
+
|
159 |
+
# noise: for unvoiced should be similar to sine_amp
|
160 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
161 |
+
# . for voiced regions is self.noise_std
|
162 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
163 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
164 |
+
|
165 |
+
# first: set the unvoiced part to 0 by uv
|
166 |
+
# then: additive noise
|
167 |
+
sine_waves = sine_waves * uv + noise
|
168 |
+
return sine_waves, uv, noise
|
169 |
+
|
170 |
+
|
171 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
172 |
+
""" SourceModule for hn-nsf
|
173 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
174 |
+
add_noise_std=0.003, voiced_threshod=0)
|
175 |
+
sampling_rate: sampling_rate in Hz
|
176 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
177 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
178 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
179 |
+
note that amplitude of noise in unvoiced is decided
|
180 |
+
by sine_amp
|
181 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
182 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
183 |
+
F0_sampled (batchsize, length, 1)
|
184 |
+
Sine_source (batchsize, length, 1)
|
185 |
+
noise_source (batchsize, length 1)
|
186 |
+
uv (batchsize, length, 1)
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
190 |
+
add_noise_std=0.003, voiced_threshod=0):
|
191 |
+
super(SourceModuleHnNSF, self).__init__()
|
192 |
+
|
193 |
+
self.sine_amp = sine_amp
|
194 |
+
self.noise_std = add_noise_std
|
195 |
+
|
196 |
+
# to produce sine waveforms
|
197 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
198 |
+
sine_amp, add_noise_std, voiced_threshod)
|
199 |
+
|
200 |
+
# to merge source harmonics into a single excitation
|
201 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
202 |
+
self.l_tanh = torch.nn.Tanh()
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
"""
|
206 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
207 |
+
F0_sampled (batchsize, length, 1)
|
208 |
+
Sine_source (batchsize, length, 1)
|
209 |
+
noise_source (batchsize, length 1)
|
210 |
+
"""
|
211 |
+
# source for harmonic branch
|
212 |
+
with torch.no_grad():
|
213 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
214 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
215 |
+
uv = uv.transpose(1, 2)
|
216 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
217 |
+
|
218 |
+
# source for noise branch, in the same shape as uv
|
219 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
220 |
+
return sine_merge, noise, uv
|
221 |
+
|
222 |
+
|
223 |
+
class HiFTGenerator(nn.Module):
|
224 |
+
"""
|
225 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
226 |
+
https://arxiv.org/abs/2309.09493
|
227 |
+
"""
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
in_channels: int = 80,
|
231 |
+
base_channels: int = 512,
|
232 |
+
nb_harmonics: int = 8,
|
233 |
+
sampling_rate: int = 22050,
|
234 |
+
nsf_alpha: float = 0.1,
|
235 |
+
nsf_sigma: float = 0.003,
|
236 |
+
nsf_voiced_threshold: float = 10,
|
237 |
+
upsample_rates: tp.List[int] = [8, 8],
|
238 |
+
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
239 |
+
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
240 |
+
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
241 |
+
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
242 |
+
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
243 |
+
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
244 |
+
lrelu_slope: float = 0.1,
|
245 |
+
audio_limit: float = 0.99,
|
246 |
+
f0_predictor: torch.nn.Module = None,
|
247 |
+
):
|
248 |
+
super(HiFTGenerator, self).__init__()
|
249 |
+
|
250 |
+
self.out_channels = 1
|
251 |
+
self.nb_harmonics = nb_harmonics
|
252 |
+
self.sampling_rate = sampling_rate
|
253 |
+
self.istft_params = istft_params
|
254 |
+
self.lrelu_slope = lrelu_slope
|
255 |
+
self.audio_limit = audio_limit
|
256 |
+
|
257 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
258 |
+
self.num_upsamples = len(upsample_rates)
|
259 |
+
self.m_source = SourceModuleHnNSF(
|
260 |
+
sampling_rate=sampling_rate,
|
261 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
262 |
+
harmonic_num=nb_harmonics,
|
263 |
+
sine_amp=nsf_alpha,
|
264 |
+
add_noise_std=nsf_sigma,
|
265 |
+
voiced_threshod=nsf_voiced_threshold)
|
266 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
267 |
+
|
268 |
+
self.conv_pre = weight_norm(
|
269 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
270 |
+
)
|
271 |
+
|
272 |
+
# Up
|
273 |
+
self.ups = nn.ModuleList()
|
274 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
275 |
+
self.ups.append(
|
276 |
+
weight_norm(
|
277 |
+
ConvTranspose1d(
|
278 |
+
base_channels // (2**i),
|
279 |
+
base_channels // (2**(i + 1)),
|
280 |
+
k,
|
281 |
+
u,
|
282 |
+
padding=(k - u) // 2,
|
283 |
+
)
|
284 |
+
)
|
285 |
+
)
|
286 |
+
|
287 |
+
# Down
|
288 |
+
self.source_downs = nn.ModuleList()
|
289 |
+
self.source_resblocks = nn.ModuleList()
|
290 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
291 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
292 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
293 |
+
if u == 1:
|
294 |
+
self.source_downs.append(
|
295 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
self.source_downs.append(
|
299 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
300 |
+
)
|
301 |
+
|
302 |
+
self.source_resblocks.append(
|
303 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
304 |
+
)
|
305 |
+
|
306 |
+
self.resblocks = nn.ModuleList()
|
307 |
+
for i in range(len(self.ups)):
|
308 |
+
ch = base_channels // (2**(i + 1))
|
309 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
310 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
311 |
+
|
312 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
313 |
+
self.ups.apply(init_weights)
|
314 |
+
self.conv_post.apply(init_weights)
|
315 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
316 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
317 |
+
self.f0_predictor = f0_predictor
|
318 |
+
|
319 |
+
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
320 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
321 |
+
|
322 |
+
har_source, _, _ = self.m_source(f0)
|
323 |
+
return har_source.transpose(1, 2)
|
324 |
+
|
325 |
+
def _stft(self, x):
|
326 |
+
spec = torch.stft(
|
327 |
+
x,
|
328 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
329 |
+
return_complex=True)
|
330 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
331 |
+
return spec[..., 0], spec[..., 1]
|
332 |
+
|
333 |
+
def _istft(self, magnitude, phase):
|
334 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
335 |
+
real = magnitude * torch.cos(phase)
|
336 |
+
img = magnitude * torch.sin(phase)
|
337 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
338 |
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
339 |
+
return inverse_transform
|
340 |
+
|
341 |
+
def forward(self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
342 |
+
f0 = self.f0_predictor(x)
|
343 |
+
s = self._f02source(f0)
|
344 |
+
|
345 |
+
# use cache_source to avoid glitch
|
346 |
+
if cache_source.shape[2] != 0:
|
347 |
+
s[:, :, :cache_source.shape[2]] = cache_source
|
348 |
+
|
349 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
350 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
351 |
+
|
352 |
+
x = self.conv_pre(x)
|
353 |
+
for i in range(self.num_upsamples):
|
354 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
355 |
+
x = self.ups[i](x)
|
356 |
+
|
357 |
+
if i == self.num_upsamples - 1:
|
358 |
+
x = self.reflection_pad(x)
|
359 |
+
|
360 |
+
# fusion
|
361 |
+
si = self.source_downs[i](s_stft)
|
362 |
+
si = self.source_resblocks[i](si)
|
363 |
+
x = x + si
|
364 |
+
|
365 |
+
xs = None
|
366 |
+
for j in range(self.num_kernels):
|
367 |
+
if xs is None:
|
368 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
369 |
+
else:
|
370 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
371 |
+
x = xs / self.num_kernels
|
372 |
+
|
373 |
+
x = F.leaky_relu(x)
|
374 |
+
x = self.conv_post(x)
|
375 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
376 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
377 |
+
|
378 |
+
x = self._istft(magnitude, phase)
|
379 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
380 |
+
return x, s
|
381 |
+
|
382 |
+
def remove_weight_norm(self):
|
383 |
+
print('Removing weight norm...')
|
384 |
+
for l in self.ups:
|
385 |
+
remove_weight_norm(l)
|
386 |
+
for l in self.resblocks:
|
387 |
+
l.remove_weight_norm()
|
388 |
+
remove_weight_norm(self.conv_pre)
|
389 |
+
remove_weight_norm(self.conv_post)
|
390 |
+
self.source_module.remove_weight_norm()
|
391 |
+
for l in self.source_downs:
|
392 |
+
remove_weight_norm(l)
|
393 |
+
for l in self.source_resblocks:
|
394 |
+
l.remove_weight_norm()
|
395 |
+
|
396 |
+
@torch.inference_mode()
|
397 |
+
def inference(self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
398 |
+
return self.forward(x=mel, cache_source=cache_source)
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Union
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
19 |
+
from cosyvoice.utils.common import IGNORE_ID
|
20 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
21 |
+
from cosyvoice.utils.common import th_accuracy
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerLM(torch.nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
text_encoder_input_size: int,
|
28 |
+
llm_input_size: int,
|
29 |
+
llm_output_size: int,
|
30 |
+
text_token_size: int,
|
31 |
+
speech_token_size: int,
|
32 |
+
text_encoder: torch.nn.Module,
|
33 |
+
llm: torch.nn.Module,
|
34 |
+
length_normalized_loss: bool = True,
|
35 |
+
lsm_weight: float = 0.0,
|
36 |
+
spk_embed_dim: int = 192,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.llm_input_size = llm_input_size
|
40 |
+
self.speech_token_size = speech_token_size
|
41 |
+
# 1. build text token inputs related modules
|
42 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
43 |
+
self.text_encoder = text_encoder
|
44 |
+
self.text_encoder_affine_layer = nn.Linear(
|
45 |
+
self.text_encoder.output_size(),
|
46 |
+
llm_input_size
|
47 |
+
)
|
48 |
+
|
49 |
+
# 2. build speech token language model related modules
|
50 |
+
self.sos_eos = 0
|
51 |
+
self.task_id = 1
|
52 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
53 |
+
self.llm = llm
|
54 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
55 |
+
self.criterion_ce = LabelSmoothingLoss(
|
56 |
+
size=speech_token_size + 1,
|
57 |
+
padding_idx=IGNORE_ID,
|
58 |
+
smoothing=lsm_weight,
|
59 |
+
normalize_length=length_normalized_loss,
|
60 |
+
)
|
61 |
+
|
62 |
+
# 3. [Optional] build speech token related modules
|
63 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
64 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
65 |
+
|
66 |
+
def encode(
|
67 |
+
self,
|
68 |
+
text: torch.Tensor,
|
69 |
+
text_lengths: torch.Tensor,
|
70 |
+
):
|
71 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
72 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
73 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
74 |
+
return encoder_out, encoder_out_lens
|
75 |
+
|
76 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
77 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
78 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
79 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
|
80 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
81 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
82 |
+
return lm_input, lm_input_len
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
batch: dict,
|
87 |
+
device: torch.device,
|
88 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
89 |
+
"""
|
90 |
+
Args:
|
91 |
+
text: (B, L, D)
|
92 |
+
text_lengths: (B,)
|
93 |
+
audio: (B, T, N) or (B, T)
|
94 |
+
audio_lengths: (B,)
|
95 |
+
"""
|
96 |
+
text_token = batch['text_token'].to(device)
|
97 |
+
text_token_len = batch['text_token_len'].to(device)
|
98 |
+
speech_token = batch['speech_token'].to(device)
|
99 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
100 |
+
embedding = batch['embedding'].to(device)
|
101 |
+
|
102 |
+
# 1. prepare llm_target
|
103 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
104 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
105 |
+
|
106 |
+
# 1. encode text_token
|
107 |
+
text_token = self.text_embedding(text_token)
|
108 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
109 |
+
|
110 |
+
# 2. embedding projection
|
111 |
+
embedding = F.normalize(embedding, dim=1)
|
112 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
113 |
+
embedding = embedding.unsqueeze(1)
|
114 |
+
|
115 |
+
# 3. eos and task_id
|
116 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
117 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
118 |
+
|
119 |
+
# 4. encode speech_token
|
120 |
+
speech_token = self.speech_embedding(speech_token)
|
121 |
+
|
122 |
+
# 5. unpad and pad
|
123 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
|
124 |
+
|
125 |
+
# 6. run lm forward
|
126 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
127 |
+
logits = self.llm_decoder(lm_output)
|
128 |
+
loss = self.criterion_ce(logits, lm_target)
|
129 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
130 |
+
return {'loss': loss, 'acc': acc}
|
131 |
+
|
132 |
+
def sampling_ids(
|
133 |
+
self,
|
134 |
+
weighted_scores: torch.Tensor,
|
135 |
+
sampling: Union[bool, int, float] = True,
|
136 |
+
beam_size: int = 1,
|
137 |
+
ignore_eos: bool = True,
|
138 |
+
):
|
139 |
+
while True:
|
140 |
+
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
|
141 |
+
top_ids = prob.multinomial(beam_size, replacement=True)
|
142 |
+
top_ids = indices[top_ids]
|
143 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
144 |
+
break
|
145 |
+
return top_ids
|
146 |
+
|
147 |
+
@torch.inference_mode()
|
148 |
+
def inference(
|
149 |
+
self,
|
150 |
+
text: torch.Tensor,
|
151 |
+
text_len: torch.Tensor,
|
152 |
+
prompt_text: torch.Tensor,
|
153 |
+
prompt_text_len: torch.Tensor,
|
154 |
+
prompt_speech_token: torch.Tensor,
|
155 |
+
prompt_speech_token_len: torch.Tensor,
|
156 |
+
embedding: torch.Tensor,
|
157 |
+
beam_size: int = 1,
|
158 |
+
sampling: int = 25,
|
159 |
+
max_token_text_ratio: float = 20,
|
160 |
+
min_token_text_ratio: float = 2,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
device = text.device
|
163 |
+
text = torch.concat([prompt_text, text], dim=1)
|
164 |
+
text_len += prompt_text_len
|
165 |
+
text = self.text_embedding(text)
|
166 |
+
|
167 |
+
# 1. encode text
|
168 |
+
text, text_len = self.encode(text, text_len)
|
169 |
+
|
170 |
+
# 2. encode embedding
|
171 |
+
if embedding.shape[0] != 0:
|
172 |
+
embedding = F.normalize(embedding, dim=1)
|
173 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
174 |
+
embedding = embedding.unsqueeze(dim=1)
|
175 |
+
else:
|
176 |
+
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
|
177 |
+
|
178 |
+
# 3. concat llm_input
|
179 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
180 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
181 |
+
if prompt_speech_token_len != 0:
|
182 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
183 |
+
else:
|
184 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
|
185 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
186 |
+
|
187 |
+
# 4. cal min/max_length
|
188 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
189 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
190 |
+
|
191 |
+
# 5. step by step decode
|
192 |
+
out_tokens = []
|
193 |
+
offset = 0
|
194 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
195 |
+
for i in range(max_len):
|
196 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
|
197 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
|
198 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
199 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
|
200 |
+
if top_ids == self.speech_token_size:
|
201 |
+
break
|
202 |
+
out_tokens.append(top_ids)
|
203 |
+
offset += lm_input.size(1)
|
204 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
205 |
+
|
206 |
+
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/activation.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
|
2 |
+
# 2020 Northwestern Polytechnical University (Pengcheng Guo)
|
3 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Swish() activation function for Conformer."""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn, sin, pow
|
21 |
+
from torch.nn import Parameter
|
22 |
+
|
23 |
+
|
24 |
+
class Swish(torch.nn.Module):
|
25 |
+
"""Construct an Swish object."""
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
"""Return Swish activation function."""
|
29 |
+
return x * torch.sigmoid(x)
|
30 |
+
|
31 |
+
|
32 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
33 |
+
# LICENSE is in incl_licenses directory.
|
34 |
+
class Snake(nn.Module):
|
35 |
+
'''
|
36 |
+
Implementation of a sine-based periodic activation function
|
37 |
+
Shape:
|
38 |
+
- Input: (B, C, T)
|
39 |
+
- Output: (B, C, T), same shape as the input
|
40 |
+
Parameters:
|
41 |
+
- alpha - trainable parameter
|
42 |
+
References:
|
43 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
44 |
+
https://arxiv.org/abs/2006.08195
|
45 |
+
Examples:
|
46 |
+
>>> a1 = snake(256)
|
47 |
+
>>> x = torch.randn(256)
|
48 |
+
>>> x = a1(x)
|
49 |
+
'''
|
50 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
51 |
+
'''
|
52 |
+
Initialization.
|
53 |
+
INPUT:
|
54 |
+
- in_features: shape of the input
|
55 |
+
- alpha: trainable parameter
|
56 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
57 |
+
alpha will be trained along with the rest of your model.
|
58 |
+
'''
|
59 |
+
super(Snake, self).__init__()
|
60 |
+
self.in_features = in_features
|
61 |
+
|
62 |
+
# initialize alpha
|
63 |
+
self.alpha_logscale = alpha_logscale
|
64 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
65 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
66 |
+
else: # linear scale alphas initialized to ones
|
67 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
68 |
+
|
69 |
+
self.alpha.requires_grad = alpha_trainable
|
70 |
+
|
71 |
+
self.no_div_by_zero = 0.000000001
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
'''
|
75 |
+
Forward pass of the function.
|
76 |
+
Applies the function to the input elementwise.
|
77 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
78 |
+
'''
|
79 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
80 |
+
if self.alpha_logscale:
|
81 |
+
alpha = torch.exp(alpha)
|
82 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
83 |
+
|
84 |
+
return x
|
cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
CosyVoice.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x):
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
237 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
238 |
+
|
239 |
+
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
240 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
241 |
+
:, :, :, : x.size(-1) // 2 + 1
|
242 |
+
] # only keep the positions from 0 to time2
|
243 |
+
return x
|
244 |
+
|
245 |
+
def forward(
|
246 |
+
self,
|
247 |
+
query: torch.Tensor,
|
248 |
+
key: torch.Tensor,
|
249 |
+
value: torch.Tensor,
|
250 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
251 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
252 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
253 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
254 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
255 |
+
Args:
|
256 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
257 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
258 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
259 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
260 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
261 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
262 |
+
(#batch, time2, size).
|
263 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
264 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
265 |
+
and `head * d_k == size`
|
266 |
+
Returns:
|
267 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
268 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
269 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
270 |
+
and `head * d_k == size`
|
271 |
+
"""
|
272 |
+
q, k, v = self.forward_qkv(query, key, value)
|
273 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
274 |
+
|
275 |
+
# NOTE(xcsong):
|
276 |
+
# when export onnx model, for 1st chunk, we feed
|
277 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
278 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
279 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
280 |
+
# and we will always do splitting and
|
281 |
+
# concatnation(this will simplify onnx export). Note that
|
282 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
283 |
+
# when export jit model, for 1st chunk, we always feed
|
284 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
285 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
286 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
287 |
+
# >>> c = torch.cat((a, b), dim=2)
|
288 |
+
# >>> torch.equal(b, c) # True
|
289 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
290 |
+
# >>> torch.equal(d[0], d[1]) # True
|
291 |
+
if cache.size(0) > 0:
|
292 |
+
key_cache, value_cache = torch.split(cache,
|
293 |
+
cache.size(-1) // 2,
|
294 |
+
dim=-1)
|
295 |
+
k = torch.cat([key_cache, k], dim=2)
|
296 |
+
v = torch.cat([value_cache, v], dim=2)
|
297 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
298 |
+
# non-trivial to calculate `next_cache_start` here.
|
299 |
+
new_cache = torch.cat((k, v), dim=-1)
|
300 |
+
|
301 |
+
n_batch_pos = pos_emb.size(0)
|
302 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
303 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
304 |
+
|
305 |
+
# (batch, head, time1, d_k)
|
306 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
307 |
+
# (batch, head, time1, d_k)
|
308 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
309 |
+
|
310 |
+
# compute attention score
|
311 |
+
# first compute matrix a and matrix c
|
312 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
313 |
+
# (batch, head, time1, time2)
|
314 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
315 |
+
|
316 |
+
# compute matrix b and matrix d
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
319 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
320 |
+
if matrix_ac.shape != matrix_bd.shape:
|
321 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
322 |
+
|
323 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
324 |
+
self.d_k) # (batch, head, time1, time2)
|
325 |
+
|
326 |
+
return self.forward_attention(v, scores, mask), new_cache
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
# class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention):
|
332 |
+
# """Multi-Head Attention layer with relative position encoding.
|
333 |
+
# Paper: https://arxiv.org/abs/1901.02860
|
334 |
+
# Args:
|
335 |
+
# n_head (int): The number of heads.
|
336 |
+
# n_feat (int): The number of features.
|
337 |
+
# dropout_rate (float): Dropout rate.
|
338 |
+
# """
|
339 |
+
|
340 |
+
# def __init__(self,
|
341 |
+
# n_head: int,
|
342 |
+
# n_feat: int,
|
343 |
+
# dropout_rate: float,
|
344 |
+
# key_bias: bool = True,
|
345 |
+
# block_size=25):
|
346 |
+
# """Construct an RelPositionMultiHeadedAttention object."""
|
347 |
+
# super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
348 |
+
# # linear transformation for positional encoding
|
349 |
+
# self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
350 |
+
# # these two learnable bias are used in matrix c and matrix d
|
351 |
+
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
352 |
+
# self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
353 |
+
# self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
354 |
+
# torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
355 |
+
# torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
356 |
+
# self.block_size=block_size
|
357 |
+
|
358 |
+
# def rel_shift(self, x):
|
359 |
+
# """Compute relative positional encoding.
|
360 |
+
|
361 |
+
# Args:
|
362 |
+
# x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
363 |
+
# time1 means the length of query vector.
|
364 |
+
|
365 |
+
# Returns:
|
366 |
+
# torch.Tensor: Output tensor.
|
367 |
+
|
368 |
+
# """
|
369 |
+
# zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
370 |
+
# x_padded = torch.cat([zero_pad, x], dim=-1)
|
371 |
+
|
372 |
+
# x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
373 |
+
# x = x_padded[:, :, 1:].view_as(x)[
|
374 |
+
# :, :, :, : x.size(-1) // 2 + 1
|
375 |
+
# ] # only keep the positions from 0 to time2
|
376 |
+
# return x
|
377 |
+
|
378 |
+
# def forward(
|
379 |
+
# self,
|
380 |
+
# query: torch.Tensor,
|
381 |
+
# key: torch.Tensor,
|
382 |
+
# value: torch.Tensor,
|
383 |
+
# mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
384 |
+
# pos_emb: torch.Tensor = torch.empty(0),
|
385 |
+
# cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
386 |
+
# ) -> Tuple[torch.Tensor, torch.Tensor]:
|
387 |
+
# """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
388 |
+
# Args:
|
389 |
+
# query (torch.Tensor): Query tensor (#batch, time1, size).
|
390 |
+
# key (torch.Tensor): Key tensor (#batch, time2, size).
|
391 |
+
# value (torch.Tensor): Value tensor (#batch, time2, size).
|
392 |
+
# mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
393 |
+
# (#batch, time1, time2), (0, 0, 0) means fake mask.
|
394 |
+
# pos_emb (torch.Tensor): Positional embedding tensor
|
395 |
+
# (#batch, time2, size).
|
396 |
+
# cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
397 |
+
# where `cache_t == chunk_size * num_decoding_left_chunks`
|
398 |
+
# and `head * d_k == size`
|
399 |
+
# Returns:
|
400 |
+
# torch.Tensor: Output tensor (#batch, time1, d_model).
|
401 |
+
# torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
402 |
+
# where `cache_t == chunk_size * num_decoding_left_chunks`
|
403 |
+
# and `head * d_k == size`
|
404 |
+
# """
|
405 |
+
# q, k, v = self.forward_qkv(query, key, value)
|
406 |
+
# q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
407 |
+
|
408 |
+
# # NOTE(xcsong):
|
409 |
+
# # when export onnx model, for 1st chunk, we feed
|
410 |
+
# # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
411 |
+
# # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
412 |
+
# # In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
413 |
+
# # and we will always do splitting and
|
414 |
+
# # concatnation(this will simplify onnx export). Note that
|
415 |
+
# # it's OK to concat & split zero-shaped tensors(see code below).
|
416 |
+
# # when export jit model, for 1st chunk, we always feed
|
417 |
+
# # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
418 |
+
# # >>> a = torch.ones((1, 2, 0, 4))
|
419 |
+
# # >>> b = torch.ones((1, 2, 3, 4))
|
420 |
+
# # >>> c = torch.cat((a, b), dim=2)
|
421 |
+
# # >>> torch.equal(b, c) # True
|
422 |
+
# # >>> d = torch.split(a, 2, dim=-1)
|
423 |
+
# # >>> torch.equal(d[0], d[1]) # True
|
424 |
+
# if cache.size(0) > 0:
|
425 |
+
# key_cache, value_cache = torch.split(cache,
|
426 |
+
# cache.size(-1) // 2,
|
427 |
+
# dim=-1)
|
428 |
+
# k = torch.cat([key_cache, k], dim=2)
|
429 |
+
# v = torch.cat([value_cache, v], dim=2)
|
430 |
+
# # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
431 |
+
# # non-trivial to calculate `next_cache_start` here.
|
432 |
+
# new_cache = torch.cat((k, v), dim=-1)
|
433 |
+
|
434 |
+
# n_batch_pos = pos_emb.size(0)
|
435 |
+
# p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
436 |
+
# p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
437 |
+
|
438 |
+
# # (batch, head, time1, d_k)
|
439 |
+
# q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
440 |
+
# # (batch, head, time1, d_k)
|
441 |
+
# q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
442 |
+
|
443 |
+
# # compute attention score
|
444 |
+
# # first compute matrix a and matrix c
|
445 |
+
# # as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
446 |
+
# # (batch, head, time1, time2)
|
447 |
+
|
448 |
+
# # Compute matrix ac and bd
|
449 |
+
# matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # (batch, head, time1, time2)
|
450 |
+
# matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) # (batch, head, time1, time2)
|
451 |
+
|
452 |
+
# batch_size, num_heads, seq_len, _ = matrix_ac.shape
|
453 |
+
|
454 |
+
# # Create block causal mask
|
455 |
+
# block_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=self.block_size).to(matrix_ac.device).bool()
|
456 |
+
# # mask = mask.masked_fill(mask == 1, float('-inf')) # mask upper triangular matrix beyond block
|
457 |
+
|
458 |
+
# # Apply relative shift if necessary
|
459 |
+
# if matrix_ac.shape != matrix_bd.shape:
|
460 |
+
# matrix_bd = self.rel_shift(matrix_bd)
|
461 |
+
|
462 |
+
# # Combine ac and bd and apply the block causal mask
|
463 |
+
# scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
|
464 |
+
# scores = scores.masked_fill(block_mask.unsqueeze(0).unsqueeze(0), float('-inf')) # apply the block mask
|
465 |
+
|
466 |
+
# # Forward attention
|
467 |
+
# return self.forward_attention(v, scores, mask), new_cache
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
from cosyvoice.utils import block_mask_util
|
472 |
+
class BlockRelPositionMultiHeadedAttention(MultiHeadedAttention):
|
473 |
+
"""Multi-Head Attention layer with relative position encoding.
|
474 |
+
Paper: https://arxiv.org/abs/1901.02860
|
475 |
+
Args:
|
476 |
+
n_head (int): The number of heads.
|
477 |
+
n_feat (int): The number of features.
|
478 |
+
dropout_rate (float): Dropout rate.
|
479 |
+
"""
|
480 |
+
|
481 |
+
def __init__(self,
|
482 |
+
n_head: int,
|
483 |
+
n_feat: int,
|
484 |
+
dropout_rate: float,
|
485 |
+
key_bias: bool = True, block_size=25):
|
486 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
487 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
488 |
+
# linear transformation for positional encoding
|
489 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
490 |
+
# these two learnable bias are used in matrix c and matrix d
|
491 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
492 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
493 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
494 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
495 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
496 |
+
self.block_size = block_size
|
497 |
+
|
498 |
+
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
499 |
+
"""Compute relative positional encoding.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
503 |
+
time1 means the length of query vector.
|
504 |
+
|
505 |
+
Returns:
|
506 |
+
torch.Tensor: Output tensor.
|
507 |
+
|
508 |
+
"""
|
509 |
+
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
510 |
+
device=x.device,
|
511 |
+
dtype=x.dtype)
|
512 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
513 |
+
|
514 |
+
x_padded = x_padded.view(x.size()[0],
|
515 |
+
x.size()[1],
|
516 |
+
x.size(3) + 1, x.size(2))
|
517 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
518 |
+
:, :, :, : x.size(-1) // 2 + 1
|
519 |
+
] # only keep the positions from 0 to time2
|
520 |
+
return x
|
521 |
+
|
522 |
+
def forward(
|
523 |
+
self,
|
524 |
+
query: torch.Tensor,
|
525 |
+
key: torch.Tensor,
|
526 |
+
value: torch.Tensor,
|
527 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
528 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
529 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
530 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
531 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
532 |
+
Args:
|
533 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
534 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
535 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
536 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
537 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
538 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
539 |
+
(#batch, time2, size).
|
540 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
541 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
542 |
+
and `head * d_k == size`
|
543 |
+
Returns:
|
544 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
545 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
546 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
547 |
+
and `head * d_k == size`
|
548 |
+
"""
|
549 |
+
q, k, v = self.forward_qkv(query, key, value)
|
550 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
551 |
+
|
552 |
+
# 0代表被mask的位置
|
553 |
+
bs, time_len, _ = query.shape
|
554 |
+
# mask = torch.tril(torch.ones(time_len, time_len).to(mask), diagonal=0).int()
|
555 |
+
# block_size = self.block_size
|
556 |
+
# mask[:, 0:block_size] = 1
|
557 |
+
block_mask = block_mask_util.create_grid_mask(time_len,self.block_size,fill_triangle=True).to(query).int()
|
558 |
+
block_mask = block_mask[None].repeat(bs, 1, 1)
|
559 |
+
mask=mask*block_mask
|
560 |
+
|
561 |
+
# NOTE(xcsong):
|
562 |
+
# when export onnx model, for 1st chunk, we feed
|
563 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
564 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
565 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
566 |
+
# and we will always do splitting and
|
567 |
+
# concatnation(this will simplify onnx export). Note that
|
568 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
569 |
+
# when export jit model, for 1st chunk, we always feed
|
570 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
571 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
572 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
573 |
+
# >>> c = torch.cat((a, b), dim=2)
|
574 |
+
# >>> torch.equal(b, c) # True
|
575 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
576 |
+
# >>> torch.equal(d[0], d[1]) # True
|
577 |
+
if cache.size(0) > 0:
|
578 |
+
key_cache, value_cache = torch.split(cache,
|
579 |
+
cache.size(-1) // 2,
|
580 |
+
dim=-1)
|
581 |
+
k = torch.cat([key_cache, k], dim=2)
|
582 |
+
v = torch.cat([value_cache, v], dim=2)
|
583 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
584 |
+
# non-trivial to calculate `next_cache_start` here.
|
585 |
+
new_cache = torch.cat((k, v), dim=-1)
|
586 |
+
|
587 |
+
n_batch_pos = pos_emb.size(0)
|
588 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
589 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
590 |
+
|
591 |
+
# (batch, head, time1, d_k)
|
592 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
593 |
+
# (batch, head, time1, d_k)
|
594 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
595 |
+
|
596 |
+
# compute attention score
|
597 |
+
# first compute matrix a and matrix c
|
598 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
599 |
+
# (batch, head, time1, time2)
|
600 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
601 |
+
|
602 |
+
# compute matrix b and matrix d
|
603 |
+
# (batch, head, time1, time2)
|
604 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
605 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
606 |
+
if matrix_ac.shape != matrix_bd.shape:
|
607 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
608 |
+
|
609 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
610 |
+
self.d_k) # (batch, head, time1, time2)
|
611 |
+
|
612 |
+
return self.forward_attention(v, scores, mask), new_cache
|
cosyvoice/transformer/convolution.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""ConvolutionModule definition."""
|
17 |
+
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class ConvolutionModule(nn.Module):
|
25 |
+
"""ConvolutionModule in Conformer model."""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
channels: int,
|
29 |
+
kernel_size: int = 15,
|
30 |
+
activation: nn.Module = nn.ReLU(),
|
31 |
+
norm: str = "batch_norm",
|
32 |
+
causal: bool = False,
|
33 |
+
bias: bool = True):
|
34 |
+
"""Construct an ConvolutionModule object.
|
35 |
+
Args:
|
36 |
+
channels (int): The number of channels of conv layers.
|
37 |
+
kernel_size (int): Kernel size of conv layers.
|
38 |
+
causal (int): Whether use causal convolution or not
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.pointwise_conv1 = nn.Conv1d(
|
43 |
+
channels,
|
44 |
+
2 * channels,
|
45 |
+
kernel_size=1,
|
46 |
+
stride=1,
|
47 |
+
padding=0,
|
48 |
+
bias=bias,
|
49 |
+
)
|
50 |
+
# self.lorder is used to distinguish if it's a causal convolution,
|
51 |
+
# if self.lorder > 0: it's a causal convolution, the input will be
|
52 |
+
# padded with self.lorder frames on the left in forward.
|
53 |
+
# else: it's a symmetrical convolution
|
54 |
+
if causal:
|
55 |
+
padding = 0
|
56 |
+
self.lorder = kernel_size - 1
|
57 |
+
else:
|
58 |
+
# kernel_size should be an odd number for none causal convolution
|
59 |
+
assert (kernel_size - 1) % 2 == 0
|
60 |
+
padding = (kernel_size - 1) // 2
|
61 |
+
self.lorder = 0
|
62 |
+
self.depthwise_conv = nn.Conv1d(
|
63 |
+
channels,
|
64 |
+
channels,
|
65 |
+
kernel_size,
|
66 |
+
stride=1,
|
67 |
+
padding=padding,
|
68 |
+
groups=channels,
|
69 |
+
bias=bias,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert norm in ['batch_norm', 'layer_norm']
|
73 |
+
if norm == "batch_norm":
|
74 |
+
self.use_layer_norm = False
|
75 |
+
self.norm = nn.BatchNorm1d(channels)
|
76 |
+
else:
|
77 |
+
self.use_layer_norm = True
|
78 |
+
self.norm = nn.LayerNorm(channels)
|
79 |
+
|
80 |
+
self.pointwise_conv2 = nn.Conv1d(
|
81 |
+
channels,
|
82 |
+
channels,
|
83 |
+
kernel_size=1,
|
84 |
+
stride=1,
|
85 |
+
padding=0,
|
86 |
+
bias=bias,
|
87 |
+
)
|
88 |
+
self.activation = activation
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
94 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
96 |
+
"""Compute convolution module.
|
97 |
+
Args:
|
98 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
99 |
+
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
100 |
+
(0, 0, 0) means fake mask.
|
101 |
+
cache (torch.Tensor): left context cache, it is only
|
102 |
+
used in causal convolution (#batch, channels, cache_t),
|
103 |
+
(0, 0, 0) meas fake cache.
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
106 |
+
"""
|
107 |
+
# exchange the temporal dimension and the feature dimension
|
108 |
+
x = x.transpose(1, 2) # (#batch, channels, time)
|
109 |
+
|
110 |
+
# mask batch padding
|
111 |
+
if mask_pad.size(2) > 0: # time > 0
|
112 |
+
x.masked_fill_(~mask_pad, 0.0)
|
113 |
+
|
114 |
+
if self.lorder > 0:
|
115 |
+
if cache.size(2) == 0: # cache_t == 0
|
116 |
+
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
117 |
+
else:
|
118 |
+
assert cache.size(0) == x.size(0) # equal batch
|
119 |
+
assert cache.size(1) == x.size(1) # equal channel
|
120 |
+
x = torch.cat((cache, x), dim=2)
|
121 |
+
assert (x.size(2) > self.lorder)
|
122 |
+
new_cache = x[:, :, -self.lorder:]
|
123 |
+
else:
|
124 |
+
# It's better we just return None if no cache is required,
|
125 |
+
# However, for JIT export, here we just fake one tensor instead of
|
126 |
+
# None.
|
127 |
+
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
128 |
+
|
129 |
+
# GLU mechanism
|
130 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
131 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
132 |
+
|
133 |
+
# 1D Depthwise Conv
|
134 |
+
x = self.depthwise_conv(x)
|
135 |
+
if self.use_layer_norm:
|
136 |
+
x = x.transpose(1, 2)
|
137 |
+
x = self.activation(self.norm(x))
|
138 |
+
if self.use_layer_norm:
|
139 |
+
x = x.transpose(1, 2)
|
140 |
+
x = self.pointwise_conv2(x)
|
141 |
+
# mask batch padding
|
142 |
+
if mask_pad.size(2) > 0: # time > 0
|
143 |
+
x.masked_fill_(~mask_pad, 0.0)
|
144 |
+
|
145 |
+
return x.transpose(1, 2), new_cache
|
cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.ignore(drop=True)
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
cosyvoice/transformer/embedding.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Positonal Encoding Module."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
|
26 |
+
class PositionalEncoding(torch.nn.Module):
|
27 |
+
"""Positional encoding.
|
28 |
+
|
29 |
+
:param int d_model: embedding dim
|
30 |
+
:param float dropout_rate: dropout rate
|
31 |
+
:param int max_len: maximum input length
|
32 |
+
|
33 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
34 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
d_model: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
max_len: int = 5000,
|
41 |
+
reverse: bool = False):
|
42 |
+
"""Construct an PositionalEncoding object."""
|
43 |
+
super().__init__()
|
44 |
+
self.d_model = d_model
|
45 |
+
self.xscale = math.sqrt(self.d_model)
|
46 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
47 |
+
self.max_len = max_len
|
48 |
+
|
49 |
+
self.pe = torch.zeros(self.max_len, self.d_model)
|
50 |
+
position = torch.arange(0, self.max_len,
|
51 |
+
dtype=torch.float32).unsqueeze(1)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
54 |
+
-(math.log(10000.0) / self.d_model))
|
55 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
56 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
57 |
+
self.pe = self.pe.unsqueeze(0)
|
58 |
+
|
59 |
+
def forward(self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
offset: Union[int, torch.Tensor] = 0) \
|
62 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
"""Add positional encoding.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
67 |
+
offset (int, torch.tensor): position offset
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
71 |
+
torch.Tensor: for compatibility to RelPositionalEncoding
|
72 |
+
"""
|
73 |
+
|
74 |
+
self.pe = self.pe.to(x.device)
|
75 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
76 |
+
x = x * self.xscale + pos_emb
|
77 |
+
return self.dropout(x), self.dropout(pos_emb)
|
78 |
+
|
79 |
+
def position_encoding(self,
|
80 |
+
offset: Union[int, torch.Tensor],
|
81 |
+
size: int,
|
82 |
+
apply_dropout: bool = True) -> torch.Tensor:
|
83 |
+
""" For getting encoding in a streaming fashion
|
84 |
+
|
85 |
+
Attention!!!!!
|
86 |
+
we apply dropout only once at the whole utterance level in a none
|
87 |
+
streaming way, but will call this function several times with
|
88 |
+
increasing input size in a streaming scenario, so the dropout will
|
89 |
+
be applied several times.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
offset (int or torch.tensor): start offset
|
93 |
+
size (int): required size of position encoding
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: Corresponding encoding
|
97 |
+
"""
|
98 |
+
# How to subscript a Union type:
|
99 |
+
# https://github.com/pytorch/pytorch/issues/69434
|
100 |
+
if isinstance(offset, int):
|
101 |
+
assert offset + size <= self.max_len
|
102 |
+
pos_emb = self.pe[:, offset:offset + size]
|
103 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
104 |
+
assert offset + size <= self.max_len
|
105 |
+
pos_emb = self.pe[:, offset:offset + size]
|
106 |
+
else: # for batched streaming decoding on GPU
|
107 |
+
assert torch.max(offset) + size <= self.max_len
|
108 |
+
index = offset.unsqueeze(1) + \
|
109 |
+
torch.arange(0, size).to(offset.device) # B X T
|
110 |
+
flag = index > 0
|
111 |
+
# remove negative offset
|
112 |
+
index = index * flag
|
113 |
+
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
114 |
+
|
115 |
+
if apply_dropout:
|
116 |
+
pos_emb = self.dropout(pos_emb)
|
117 |
+
return pos_emb
|
118 |
+
|
119 |
+
|
120 |
+
class RelPositionalEncoding(PositionalEncoding):
|
121 |
+
"""Relative positional encoding module.
|
122 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
123 |
+
Args:
|
124 |
+
d_model (int): Embedding dimension.
|
125 |
+
dropout_rate (float): Dropout rate.
|
126 |
+
max_len (int): Maximum input length.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
130 |
+
"""Initialize class."""
|
131 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
132 |
+
|
133 |
+
def forward(self,
|
134 |
+
x: torch.Tensor,
|
135 |
+
offset: Union[int, torch.Tensor] = 0) \
|
136 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
137 |
+
"""Compute positional encoding.
|
138 |
+
Args:
|
139 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
140 |
+
Returns:
|
141 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
142 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
143 |
+
"""
|
144 |
+
self.pe = self.pe.to(x.device)
|
145 |
+
x = x * self.xscale
|
146 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
147 |
+
return self.dropout(x), self.dropout(pos_emb)
|
148 |
+
|
149 |
+
|
150 |
+
class WhisperPositionalEncoding(PositionalEncoding):
|
151 |
+
""" Sinusoids position encoding used in openai-whisper.encoder
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
155 |
+
super().__init__(d_model, dropout_rate, max_len)
|
156 |
+
self.xscale = 1.0
|
157 |
+
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
158 |
+
inv_timescales = torch.exp(-log_timescale_increment *
|
159 |
+
torch.arange(d_model // 2))
|
160 |
+
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
161 |
+
inv_timescales[np.newaxis, :]
|
162 |
+
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
163 |
+
delattr(self, "pe")
|
164 |
+
self.register_buffer("pe", pe.unsqueeze(0))
|
165 |
+
|
166 |
+
|
167 |
+
class LearnablePositionalEncoding(PositionalEncoding):
|
168 |
+
""" Learnable position encoding used in openai-whisper.decoder
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
172 |
+
super().__init__(d_model, dropout_rate, max_len)
|
173 |
+
# NOTE(xcsong): overwrite self.pe & self.xscale
|
174 |
+
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
175 |
+
self.xscale = 1.0
|
176 |
+
|
177 |
+
|
178 |
+
class NoPositionalEncoding(torch.nn.Module):
|
179 |
+
""" No position encoding
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, d_model: int, dropout_rate: float):
|
183 |
+
super().__init__()
|
184 |
+
self.d_model = d_model
|
185 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
186 |
+
|
187 |
+
def forward(self,
|
188 |
+
x: torch.Tensor,
|
189 |
+
offset: Union[int, torch.Tensor] = 0) \
|
190 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
""" Just return zero vector for interface compatibility
|
192 |
+
"""
|
193 |
+
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
194 |
+
return self.dropout(x), pos_emb
|
195 |
+
|
196 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
197 |
+
size: int) -> torch.Tensor:
|
198 |
+
return torch.zeros(1, size, self.d_model)
|
199 |
+
|
200 |
+
|
201 |
+
class EspnetRelPositionalEncoding(torch.nn.Module):
|
202 |
+
"""Relative positional encoding module (new implementation).
|
203 |
+
|
204 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
205 |
+
|
206 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
207 |
+
|
208 |
+
Args:
|
209 |
+
d_model (int): Embedding dimension.
|
210 |
+
dropout_rate (float): Dropout rate.
|
211 |
+
max_len (int): Maximum input length.
|
212 |
+
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
216 |
+
"""Construct an PositionalEncoding object."""
|
217 |
+
super(EspnetRelPositionalEncoding, self).__init__()
|
218 |
+
self.d_model = d_model
|
219 |
+
self.xscale = math.sqrt(self.d_model)
|
220 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
221 |
+
self.pe = None
|
222 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
223 |
+
|
224 |
+
def extend_pe(self, x):
|
225 |
+
"""Reset the positional encodings."""
|
226 |
+
if self.pe is not None:
|
227 |
+
# self.pe contains both positive and negative parts
|
228 |
+
# the length of self.pe is 2 * input_len - 1
|
229 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
230 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
231 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
232 |
+
return
|
233 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
234 |
+
# position of key vector. We use position relative positions when keys
|
235 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
236 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
237 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
238 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
239 |
+
div_term = torch.exp(
|
240 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
241 |
+
* -(math.log(10000.0) / self.d_model)
|
242 |
+
)
|
243 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
244 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
245 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
246 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
247 |
+
|
248 |
+
# Reserve the order of positive indices and concat both positive and
|
249 |
+
# negative indices. This is used to support the shifting trick
|
250 |
+
# as in https://arxiv.org/abs/1901.02860
|
251 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
252 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
253 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
254 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
255 |
+
|
256 |
+
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
|
257 |
+
"""Add positional encoding.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
264 |
+
|
265 |
+
"""
|
266 |
+
self.extend_pe(x)
|
267 |
+
x = x * self.xscale
|
268 |
+
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
269 |
+
return self.dropout(x), self.dropout(pos_emb)
|
270 |
+
|
271 |
+
def position_encoding(self,
|
272 |
+
offset: Union[int, torch.Tensor],
|
273 |
+
size: int) -> torch.Tensor:
|
274 |
+
""" For getting encoding in a streaming fashion
|
275 |
+
|
276 |
+
Attention!!!!!
|
277 |
+
we apply dropout only once at the whole utterance level in a none
|
278 |
+
streaming way, but will call this function several times with
|
279 |
+
increasing input size in a streaming scenario, so the dropout will
|
280 |
+
be applied several times.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
offset (int or torch.tensor): start offset
|
284 |
+
size (int): required size of position encoding
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
torch.Tensor: Corresponding encoding
|
288 |
+
"""
|
289 |
+
pos_emb = self.pe[
|
290 |
+
:,
|
291 |
+
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
|
292 |
+
]
|
293 |
+
return pos_emb
|
cosyvoice/transformer/encoder.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint as ckpt
|
22 |
+
|
23 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
24 |
+
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
25 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
26 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
27 |
+
from cosyvoice.utils.class_utils import (
|
28 |
+
COSYVOICE_EMB_CLASSES,
|
29 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
30 |
+
COSYVOICE_ATTENTION_CLASSES,
|
31 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
32 |
+
)
|
33 |
+
from cosyvoice.utils.mask import make_pad_mask
|
34 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
35 |
+
|
36 |
+
|
37 |
+
class BaseEncoder(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
input_size: int,
|
42 |
+
output_size: int = 256,
|
43 |
+
attention_heads: int = 4,
|
44 |
+
linear_units: int = 2048,
|
45 |
+
num_blocks: int = 6,
|
46 |
+
dropout_rate: float = 0.1,
|
47 |
+
positional_dropout_rate: float = 0.1,
|
48 |
+
attention_dropout_rate: float = 0.0,
|
49 |
+
input_layer: str = "conv2d",
|
50 |
+
pos_enc_layer_type: str = "abs_pos",
|
51 |
+
normalize_before: bool = True,
|
52 |
+
static_chunk_size: int = 0,
|
53 |
+
use_dynamic_chunk: bool = False,
|
54 |
+
global_cmvn: torch.nn.Module = None,
|
55 |
+
use_dynamic_left_chunk: bool = False,
|
56 |
+
gradient_checkpointing: bool = False,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
input_size (int): input dim
|
61 |
+
output_size (int): dimension of attention
|
62 |
+
attention_heads (int): the number of heads of multi head attention
|
63 |
+
linear_units (int): the hidden units number of position-wise feed
|
64 |
+
forward
|
65 |
+
num_blocks (int): the number of decoder blocks
|
66 |
+
dropout_rate (float): dropout rate
|
67 |
+
attention_dropout_rate (float): dropout rate in attention
|
68 |
+
positional_dropout_rate (float): dropout rate after adding
|
69 |
+
positional encoding
|
70 |
+
input_layer (str): input layer type.
|
71 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
72 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
73 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
74 |
+
normalize_before (bool):
|
75 |
+
True: use layer_norm before each sub-block of a layer.
|
76 |
+
False: use layer_norm after each sub-block of a layer.
|
77 |
+
static_chunk_size (int): chunk size for static chunk training and
|
78 |
+
decoding
|
79 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
80 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
81 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
82 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
83 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
84 |
+
dynamic chunk training
|
85 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
86 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
87 |
+
checkpointed segment during backward.
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self._output_size = output_size
|
91 |
+
|
92 |
+
self.global_cmvn = global_cmvn
|
93 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
94 |
+
input_size,
|
95 |
+
output_size,
|
96 |
+
dropout_rate,
|
97 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
98 |
+
positional_dropout_rate),
|
99 |
+
)
|
100 |
+
|
101 |
+
self.normalize_before = normalize_before
|
102 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
103 |
+
self.static_chunk_size = static_chunk_size
|
104 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
105 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
106 |
+
self.gradient_checkpointing = gradient_checkpointing
|
107 |
+
|
108 |
+
def output_size(self) -> int:
|
109 |
+
return self._output_size
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
xs: torch.Tensor,
|
114 |
+
xs_lens: torch.Tensor,
|
115 |
+
decoding_chunk_size: int = 0,
|
116 |
+
num_decoding_left_chunks: int = -1,
|
117 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
"""Embed positions in tensor.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
xs: padded input tensor (B, T, D)
|
122 |
+
xs_lens: input length (B)
|
123 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
124 |
+
0: default for training, use random dynamic chunk.
|
125 |
+
<0: for decoding, use full chunk.
|
126 |
+
>0: for decoding, use fixed chunk size as set.
|
127 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
128 |
+
the chunk size is decoding_chunk_size.
|
129 |
+
>=0: use num_decoding_left_chunks
|
130 |
+
<0: use all left chunks
|
131 |
+
Returns:
|
132 |
+
encoder output tensor xs, and subsampled masks
|
133 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
134 |
+
masks: torch.Tensor batch padding mask after subsample
|
135 |
+
(B, 1, T' ~= T/subsample_rate)
|
136 |
+
NOTE(xcsong):
|
137 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
138 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
139 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
140 |
+
"""
|
141 |
+
T = xs.size(1)
|
142 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
143 |
+
if self.global_cmvn is not None:
|
144 |
+
xs = self.global_cmvn(xs)
|
145 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
146 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
147 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
148 |
+
self.use_dynamic_chunk,
|
149 |
+
self.use_dynamic_left_chunk,
|
150 |
+
decoding_chunk_size,
|
151 |
+
self.static_chunk_size,
|
152 |
+
num_decoding_left_chunks)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
155 |
+
mask_pad)
|
156 |
+
else:
|
157 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
158 |
+
if self.normalize_before:
|
159 |
+
xs = self.after_norm(xs)
|
160 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
161 |
+
# return the masks before encoder layers, and the masks will be used
|
162 |
+
# for cross attention with decoder later
|
163 |
+
return xs, masks
|
164 |
+
|
165 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
166 |
+
pos_emb: torch.Tensor,
|
167 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
168 |
+
for layer in self.encoders:
|
169 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
170 |
+
return xs
|
171 |
+
|
172 |
+
@torch.jit.ignore(drop=True)
|
173 |
+
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
174 |
+
chunk_masks: torch.Tensor,
|
175 |
+
pos_emb: torch.Tensor,
|
176 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
177 |
+
for layer in self.encoders:
|
178 |
+
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
179 |
+
chunk_masks, pos_emb,
|
180 |
+
mask_pad)
|
181 |
+
return xs
|
182 |
+
|
183 |
+
def forward_chunk(
|
184 |
+
self,
|
185 |
+
xs: torch.Tensor,
|
186 |
+
offset: int,
|
187 |
+
required_cache_size: int,
|
188 |
+
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
189 |
+
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
190 |
+
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
191 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
192 |
+
""" Forward just one chunk
|
193 |
+
|
194 |
+
Args:
|
195 |
+
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
196 |
+
where `time == (chunk_size - 1) * subsample_rate + \
|
197 |
+
subsample.right_context + 1`
|
198 |
+
offset (int): current offset in encoder output time stamp
|
199 |
+
required_cache_size (int): cache size required for next chunk
|
200 |
+
compuation
|
201 |
+
>=0: actual cache size
|
202 |
+
<0: means all history cache is required
|
203 |
+
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
204 |
+
transformer/conformer attention, with shape
|
205 |
+
(elayers, head, cache_t1, d_k * 2), where
|
206 |
+
`head * d_k == hidden-dim` and
|
207 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
208 |
+
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
209 |
+
(elayers, b=1, hidden-dim, cache_t2), where
|
210 |
+
`cache_t2 == cnn.lorder - 1`
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
torch.Tensor: output of current input xs,
|
214 |
+
with shape (b=1, chunk_size, hidden-dim).
|
215 |
+
torch.Tensor: new attention cache required for next chunk, with
|
216 |
+
dynamic shape (elayers, head, ?, d_k * 2)
|
217 |
+
depending on required_cache_size.
|
218 |
+
torch.Tensor: new conformer cnn cache required for next chunk, with
|
219 |
+
same shape as the original cnn_cache.
|
220 |
+
|
221 |
+
"""
|
222 |
+
assert xs.size(0) == 1
|
223 |
+
# tmp_masks is just for interface compatibility
|
224 |
+
tmp_masks = torch.ones(1,
|
225 |
+
xs.size(1),
|
226 |
+
device=xs.device,
|
227 |
+
dtype=torch.bool)
|
228 |
+
tmp_masks = tmp_masks.unsqueeze(1)
|
229 |
+
if self.global_cmvn is not None:
|
230 |
+
xs = self.global_cmvn(xs)
|
231 |
+
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
232 |
+
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
233 |
+
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
234 |
+
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
235 |
+
chunk_size = xs.size(1)
|
236 |
+
attention_key_size = cache_t1 + chunk_size
|
237 |
+
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
238 |
+
size=attention_key_size)
|
239 |
+
if required_cache_size < 0:
|
240 |
+
next_cache_start = 0
|
241 |
+
elif required_cache_size == 0:
|
242 |
+
next_cache_start = attention_key_size
|
243 |
+
else:
|
244 |
+
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
245 |
+
r_att_cache = []
|
246 |
+
r_cnn_cache = []
|
247 |
+
for i, layer in enumerate(self.encoders):
|
248 |
+
# NOTE(xcsong): Before layer.forward
|
249 |
+
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
250 |
+
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
251 |
+
xs, _, new_att_cache, new_cnn_cache = layer(
|
252 |
+
xs,
|
253 |
+
att_mask,
|
254 |
+
pos_emb,
|
255 |
+
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
256 |
+
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
257 |
+
# NOTE(xcsong): After layer.forward
|
258 |
+
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
259 |
+
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
260 |
+
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
261 |
+
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
262 |
+
if self.normalize_before:
|
263 |
+
xs = self.after_norm(xs)
|
264 |
+
|
265 |
+
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
266 |
+
# ? may be larger than cache_t1, it depends on required_cache_size
|
267 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
268 |
+
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
269 |
+
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
270 |
+
|
271 |
+
return (xs, r_att_cache, r_cnn_cache)
|
272 |
+
|
273 |
+
def forward_chunk_by_chunk(
|
274 |
+
self,
|
275 |
+
xs: torch.Tensor,
|
276 |
+
decoding_chunk_size: int,
|
277 |
+
num_decoding_left_chunks: int = -1,
|
278 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
279 |
+
""" Forward input chunk by chunk with chunk_size like a streaming
|
280 |
+
fashion
|
281 |
+
|
282 |
+
Here we should pay special attention to computation cache in the
|
283 |
+
streaming style forward chunk by chunk. Three things should be taken
|
284 |
+
into account for computation in the current network:
|
285 |
+
1. transformer/conformer encoder layers output cache
|
286 |
+
2. convolution in conformer
|
287 |
+
3. convolution in subsampling
|
288 |
+
|
289 |
+
However, we don't implement subsampling cache for:
|
290 |
+
1. We can control subsampling module to output the right result by
|
291 |
+
overlapping input instead of cache left context, even though it
|
292 |
+
wastes some computation, but subsampling only takes a very
|
293 |
+
small fraction of computation in the whole model.
|
294 |
+
2. Typically, there are several covolution layers with subsampling
|
295 |
+
in subsampling module, it is tricky and complicated to do cache
|
296 |
+
with different convolution layers with different subsampling
|
297 |
+
rate.
|
298 |
+
3. Currently, nn.Sequential is used to stack all the convolution
|
299 |
+
layers in subsampling, we need to rewrite it to make it work
|
300 |
+
with cache, which is not prefered.
|
301 |
+
Args:
|
302 |
+
xs (torch.Tensor): (1, max_len, dim)
|
303 |
+
chunk_size (int): decoding chunk size
|
304 |
+
"""
|
305 |
+
assert decoding_chunk_size > 0
|
306 |
+
# The model is trained by static or dynamic chunk
|
307 |
+
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
308 |
+
subsampling = self.embed.subsampling_rate
|
309 |
+
context = self.embed.right_context + 1 # Add current frame
|
310 |
+
stride = subsampling * decoding_chunk_size
|
311 |
+
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
312 |
+
num_frames = xs.size(1)
|
313 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
314 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
315 |
+
outputs = []
|
316 |
+
offset = 0
|
317 |
+
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
318 |
+
|
319 |
+
# Feed forward overlap input step by step
|
320 |
+
for cur in range(0, num_frames - context + 1, stride):
|
321 |
+
end = min(cur + decoding_window, num_frames)
|
322 |
+
chunk_xs = xs[:, cur:end, :]
|
323 |
+
(y, att_cache,
|
324 |
+
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
325 |
+
required_cache_size, att_cache,
|
326 |
+
cnn_cache)
|
327 |
+
outputs.append(y)
|
328 |
+
offset += y.size(1)
|
329 |
+
ys = torch.cat(outputs, 1)
|
330 |
+
masks = torch.ones((1, 1, ys.size(1)),
|
331 |
+
device=ys.device,
|
332 |
+
dtype=torch.bool)
|
333 |
+
return ys, masks
|
334 |
+
|
335 |
+
|
336 |
+
class TransformerEncoder(BaseEncoder):
|
337 |
+
"""Transformer encoder module."""
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
input_size: int,
|
342 |
+
output_size: int = 256,
|
343 |
+
attention_heads: int = 4,
|
344 |
+
linear_units: int = 2048,
|
345 |
+
num_blocks: int = 6,
|
346 |
+
dropout_rate: float = 0.1,
|
347 |
+
positional_dropout_rate: float = 0.1,
|
348 |
+
attention_dropout_rate: float = 0.0,
|
349 |
+
input_layer: str = "conv2d",
|
350 |
+
pos_enc_layer_type: str = "abs_pos",
|
351 |
+
normalize_before: bool = True,
|
352 |
+
static_chunk_size: int = 0,
|
353 |
+
use_dynamic_chunk: bool = False,
|
354 |
+
global_cmvn: torch.nn.Module = None,
|
355 |
+
use_dynamic_left_chunk: bool = False,
|
356 |
+
key_bias: bool = True,
|
357 |
+
selfattention_layer_type: str = "selfattn",
|
358 |
+
activation_type: str = "relu",
|
359 |
+
gradient_checkpointing: bool = False,
|
360 |
+
):
|
361 |
+
""" Construct TransformerEncoder
|
362 |
+
|
363 |
+
See Encoder for the meaning of each parameter.
|
364 |
+
"""
|
365 |
+
super().__init__(input_size, output_size, attention_heads,
|
366 |
+
linear_units, num_blocks, dropout_rate,
|
367 |
+
positional_dropout_rate, attention_dropout_rate,
|
368 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
369 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
370 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
371 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
372 |
+
self.encoders = torch.nn.ModuleList([
|
373 |
+
TransformerEncoderLayer(
|
374 |
+
output_size,
|
375 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
376 |
+
output_size,
|
377 |
+
attention_dropout_rate,
|
378 |
+
key_bias),
|
379 |
+
PositionwiseFeedForward(output_size, linear_units,
|
380 |
+
dropout_rate, activation),
|
381 |
+
dropout_rate, normalize_before) for _ in range(num_blocks)
|
382 |
+
])
|
383 |
+
|
384 |
+
|
385 |
+
class ConformerEncoder(BaseEncoder):
|
386 |
+
"""Conformer encoder module."""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
input_size: int,
|
391 |
+
output_size: int = 256,
|
392 |
+
attention_heads: int = 4,
|
393 |
+
linear_units: int = 2048,
|
394 |
+
num_blocks: int = 6,
|
395 |
+
dropout_rate: float = 0.1,
|
396 |
+
positional_dropout_rate: float = 0.1,
|
397 |
+
attention_dropout_rate: float = 0.0,
|
398 |
+
input_layer: str = "conv2d",
|
399 |
+
pos_enc_layer_type: str = "rel_pos",
|
400 |
+
normalize_before: bool = True,
|
401 |
+
static_chunk_size: int = 0,
|
402 |
+
use_dynamic_chunk: bool = False,
|
403 |
+
global_cmvn: torch.nn.Module = None,
|
404 |
+
use_dynamic_left_chunk: bool = False,
|
405 |
+
positionwise_conv_kernel_size: int = 1,
|
406 |
+
macaron_style: bool = True,
|
407 |
+
selfattention_layer_type: str = "rel_selfattn",
|
408 |
+
activation_type: str = "swish",
|
409 |
+
use_cnn_module: bool = True,
|
410 |
+
cnn_module_kernel: int = 15,
|
411 |
+
causal: bool = False,
|
412 |
+
cnn_module_norm: str = "batch_norm",
|
413 |
+
key_bias: bool = True,
|
414 |
+
gradient_checkpointing: bool = False,
|
415 |
+
):
|
416 |
+
"""Construct ConformerEncoder
|
417 |
+
|
418 |
+
Args:
|
419 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
420 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
421 |
+
conv1d layer.
|
422 |
+
macaron_style (bool): Whether to use macaron style for
|
423 |
+
positionwise layer.
|
424 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
425 |
+
the parameter has no effect now, it's just for configure
|
426 |
+
compatibility.
|
427 |
+
activation_type (str): Encoder activation function type.
|
428 |
+
use_cnn_module (bool): Whether to use convolution module.
|
429 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
430 |
+
causal (bool): whether to use causal convolution or not.
|
431 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
432 |
+
"""
|
433 |
+
super().__init__(input_size, output_size, attention_heads,
|
434 |
+
linear_units, num_blocks, dropout_rate,
|
435 |
+
positional_dropout_rate, attention_dropout_rate,
|
436 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
437 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
438 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
439 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
440 |
+
|
441 |
+
# self-attention module definition
|
442 |
+
encoder_selfattn_layer_args = (
|
443 |
+
attention_heads,
|
444 |
+
output_size,
|
445 |
+
attention_dropout_rate,
|
446 |
+
key_bias,
|
447 |
+
)
|
448 |
+
# feed-forward module definition
|
449 |
+
positionwise_layer_args = (
|
450 |
+
output_size,
|
451 |
+
linear_units,
|
452 |
+
dropout_rate,
|
453 |
+
activation,
|
454 |
+
)
|
455 |
+
# convolution module definition
|
456 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
457 |
+
cnn_module_norm, causal)
|
458 |
+
|
459 |
+
self.encoders = torch.nn.ModuleList([
|
460 |
+
ConformerEncoderLayer(
|
461 |
+
output_size,
|
462 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
463 |
+
*encoder_selfattn_layer_args),
|
464 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
465 |
+
PositionwiseFeedForward(
|
466 |
+
*positionwise_layer_args) if macaron_style else None,
|
467 |
+
ConvolutionModule(
|
468 |
+
*convolution_layer_args) if use_cnn_module else None,
|
469 |
+
dropout_rate,
|
470 |
+
normalize_before,
|
471 |
+
) for _ in range(num_blocks)
|
472 |
+
])
|
473 |
+
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
class BlockConformerEncoder(BaseEncoder):
|
478 |
+
"""Conformer encoder module."""
|
479 |
+
|
480 |
+
def __init__(
|
481 |
+
self,
|
482 |
+
input_size: int,
|
483 |
+
output_size: int = 256,
|
484 |
+
attention_heads: int = 4,
|
485 |
+
linear_units: int = 2048,
|
486 |
+
num_blocks: int = 6,
|
487 |
+
dropout_rate: float = 0.1,
|
488 |
+
positional_dropout_rate: float = 0.1,
|
489 |
+
attention_dropout_rate: float = 0.0,
|
490 |
+
input_layer: str = "conv2d",
|
491 |
+
pos_enc_layer_type: str = "rel_pos",
|
492 |
+
normalize_before: bool = True,
|
493 |
+
static_chunk_size: int = 0,
|
494 |
+
use_dynamic_chunk: bool = False,
|
495 |
+
global_cmvn: torch.nn.Module = None,
|
496 |
+
use_dynamic_left_chunk: bool = False,
|
497 |
+
positionwise_conv_kernel_size: int = 1,
|
498 |
+
macaron_style: bool = True,
|
499 |
+
selfattention_layer_type: str = "rel_selfattn",
|
500 |
+
activation_type: str = "swish",
|
501 |
+
use_cnn_module: bool = True,
|
502 |
+
cnn_module_kernel: int = 15,
|
503 |
+
causal: bool = False,
|
504 |
+
cnn_module_norm: str = "batch_norm",
|
505 |
+
key_bias: bool = True,
|
506 |
+
gradient_checkpointing: bool = False,
|
507 |
+
block_size=25,
|
508 |
+
):
|
509 |
+
"""Construct ConformerEncoder
|
510 |
+
|
511 |
+
Args:
|
512 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
513 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
514 |
+
conv1d layer.
|
515 |
+
macaron_style (bool): Whether to use macaron style for
|
516 |
+
positionwise layer.
|
517 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
518 |
+
the parameter has no effect now, it's just for configure
|
519 |
+
compatibility.
|
520 |
+
activation_type (str): Encoder activation function type.
|
521 |
+
use_cnn_module (bool): Whether to use convolution module.
|
522 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
523 |
+
causal (bool): whether to use causal convolution or not.
|
524 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
525 |
+
"""
|
526 |
+
super().__init__(input_size, output_size, attention_heads,
|
527 |
+
linear_units, num_blocks, dropout_rate,
|
528 |
+
positional_dropout_rate, attention_dropout_rate,
|
529 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
530 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
531 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
532 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
533 |
+
|
534 |
+
# self-attention module definition
|
535 |
+
encoder_selfattn_layer_args = (
|
536 |
+
attention_heads,
|
537 |
+
output_size,
|
538 |
+
attention_dropout_rate,
|
539 |
+
key_bias,
|
540 |
+
block_size,
|
541 |
+
)
|
542 |
+
# feed-forward module definition
|
543 |
+
positionwise_layer_args = (
|
544 |
+
output_size,
|
545 |
+
linear_units,
|
546 |
+
dropout_rate,
|
547 |
+
activation,
|
548 |
+
)
|
549 |
+
# convolution module definition
|
550 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
551 |
+
cnn_module_norm, causal)
|
552 |
+
|
553 |
+
self.encoders = torch.nn.ModuleList([
|
554 |
+
ConformerEncoderLayer(
|
555 |
+
output_size,
|
556 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
557 |
+
*encoder_selfattn_layer_args),
|
558 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
559 |
+
PositionwiseFeedForward(
|
560 |
+
*positionwise_layer_args) if macaron_style else None,
|
561 |
+
ConvolutionModule(
|
562 |
+
*convolution_layer_args) if use_cnn_module else None,
|
563 |
+
dropout_rate,
|
564 |
+
normalize_before,
|
565 |
+
) for _ in range(num_blocks)
|
566 |
+
])
|
567 |
+
self.block_size=block_size
|
cosyvoice/transformer/encoder_layer.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Encoder self-attention layer definition."""
|
17 |
+
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class TransformerEncoderLayer(nn.Module):
|
25 |
+
"""Encoder layer module.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
size (int): Input dimension.
|
29 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
30 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
31 |
+
instance can be used as the argument.
|
32 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
33 |
+
`PositionwiseFeedForward`, instance can be used as the argument.
|
34 |
+
dropout_rate (float): Dropout rate.
|
35 |
+
normalize_before (bool):
|
36 |
+
True: use layer_norm before each sub-block.
|
37 |
+
False: to use layer_norm after each sub-block.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
size: int,
|
43 |
+
self_attn: torch.nn.Module,
|
44 |
+
feed_forward: torch.nn.Module,
|
45 |
+
dropout_rate: float,
|
46 |
+
normalize_before: bool = True,
|
47 |
+
):
|
48 |
+
"""Construct an EncoderLayer object."""
|
49 |
+
super().__init__()
|
50 |
+
self.self_attn = self_attn
|
51 |
+
self.feed_forward = feed_forward
|
52 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
53 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
54 |
+
self.dropout = nn.Dropout(dropout_rate)
|
55 |
+
self.size = size
|
56 |
+
self.normalize_before = normalize_before
|
57 |
+
|
58 |
+
def forward(
|
59 |
+
self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
mask: torch.Tensor,
|
62 |
+
pos_emb: torch.Tensor,
|
63 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
64 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
65 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
66 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
67 |
+
"""Compute encoded features.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
x (torch.Tensor): (#batch, time, size)
|
71 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
72 |
+
(0, 0, 0) means fake mask.
|
73 |
+
pos_emb (torch.Tensor): just for interface compatibility
|
74 |
+
to ConformerEncoderLayer
|
75 |
+
mask_pad (torch.Tensor): does not used in transformer layer,
|
76 |
+
just for unified api with conformer.
|
77 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
78 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
79 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
80 |
+
(#batch=1, size, cache_t2), not used here, it's for interface
|
81 |
+
compatibility to ConformerEncoderLayer.
|
82 |
+
Returns:
|
83 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
84 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
85 |
+
torch.Tensor: att_cache tensor,
|
86 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
87 |
+
torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = x
|
91 |
+
if self.normalize_before:
|
92 |
+
x = self.norm1(x)
|
93 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
|
94 |
+
x = residual + self.dropout(x_att)
|
95 |
+
if not self.normalize_before:
|
96 |
+
x = self.norm1(x)
|
97 |
+
|
98 |
+
residual = x
|
99 |
+
if self.normalize_before:
|
100 |
+
x = self.norm2(x)
|
101 |
+
x = residual + self.dropout(self.feed_forward(x))
|
102 |
+
if not self.normalize_before:
|
103 |
+
x = self.norm2(x)
|
104 |
+
|
105 |
+
fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
106 |
+
return x, mask, new_att_cache, fake_cnn_cache
|
107 |
+
|
108 |
+
|
109 |
+
class ConformerEncoderLayer(nn.Module):
|
110 |
+
"""Encoder layer module.
|
111 |
+
Args:
|
112 |
+
size (int): Input dimension.
|
113 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
114 |
+
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
115 |
+
instance can be used as the argument.
|
116 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
117 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
118 |
+
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
|
119 |
+
instance.
|
120 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
121 |
+
conv_module (torch.nn.Module): Convolution module instance.
|
122 |
+
`ConvlutionModule` instance can be used as the argument.
|
123 |
+
dropout_rate (float): Dropout rate.
|
124 |
+
normalize_before (bool):
|
125 |
+
True: use layer_norm before each sub-block.
|
126 |
+
False: use layer_norm after each sub-block.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
size: int,
|
132 |
+
self_attn: torch.nn.Module,
|
133 |
+
feed_forward: Optional[nn.Module] = None,
|
134 |
+
feed_forward_macaron: Optional[nn.Module] = None,
|
135 |
+
conv_module: Optional[nn.Module] = None,
|
136 |
+
dropout_rate: float = 0.1,
|
137 |
+
normalize_before: bool = True,
|
138 |
+
):
|
139 |
+
"""Construct an EncoderLayer object."""
|
140 |
+
super().__init__()
|
141 |
+
self.self_attn = self_attn
|
142 |
+
self.feed_forward = feed_forward
|
143 |
+
self.feed_forward_macaron = feed_forward_macaron
|
144 |
+
self.conv_module = conv_module
|
145 |
+
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
|
146 |
+
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
|
147 |
+
if feed_forward_macaron is not None:
|
148 |
+
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
|
149 |
+
self.ff_scale = 0.5
|
150 |
+
else:
|
151 |
+
self.ff_scale = 1.0
|
152 |
+
if self.conv_module is not None:
|
153 |
+
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
|
154 |
+
self.norm_final = nn.LayerNorm(
|
155 |
+
size, eps=1e-5) # for the final output of the block
|
156 |
+
self.dropout = nn.Dropout(dropout_rate)
|
157 |
+
self.size = size
|
158 |
+
self.normalize_before = normalize_before
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
x: torch.Tensor,
|
163 |
+
mask: torch.Tensor,
|
164 |
+
pos_emb: torch.Tensor,
|
165 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
166 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
167 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
|
168 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
169 |
+
"""Compute encoded features.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
x (torch.Tensor): (#batch, time, size)
|
173 |
+
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
|
174 |
+
(0, 0, 0) means fake mask.
|
175 |
+
pos_emb (torch.Tensor): positional encoding, must not be None
|
176 |
+
for ConformerEncoderLayer.
|
177 |
+
mask_pad (torch.Tensor): batch padding mask used for conv module.
|
178 |
+
(#batch, 1,time), (0, 0, 0) means fake mask.
|
179 |
+
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
|
180 |
+
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
181 |
+
cnn_cache (torch.Tensor): Convolution cache in conformer layer
|
182 |
+
(#batch=1, size, cache_t2)
|
183 |
+
Returns:
|
184 |
+
torch.Tensor: Output tensor (#batch, time, size).
|
185 |
+
torch.Tensor: Mask tensor (#batch, time, time).
|
186 |
+
torch.Tensor: att_cache tensor,
|
187 |
+
(#batch=1, head, cache_t1 + time, d_k * 2).
|
188 |
+
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
189 |
+
"""
|
190 |
+
|
191 |
+
# whether to use macaron style
|
192 |
+
if self.feed_forward_macaron is not None:
|
193 |
+
residual = x
|
194 |
+
if self.normalize_before:
|
195 |
+
x = self.norm_ff_macaron(x)
|
196 |
+
x = residual + self.ff_scale * self.dropout(
|
197 |
+
self.feed_forward_macaron(x))
|
198 |
+
if not self.normalize_before:
|
199 |
+
x = self.norm_ff_macaron(x)
|
200 |
+
|
201 |
+
# multi-headed self-attention module
|
202 |
+
residual = x
|
203 |
+
if self.normalize_before:
|
204 |
+
x = self.norm_mha(x)
|
205 |
+
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
|
206 |
+
att_cache)
|
207 |
+
x = residual + self.dropout(x_att)
|
208 |
+
if not self.normalize_before:
|
209 |
+
x = self.norm_mha(x)
|
210 |
+
|
211 |
+
# convolution module
|
212 |
+
# Fake new cnn cache here, and then change it in conv_module
|
213 |
+
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
214 |
+
if self.conv_module is not None:
|
215 |
+
residual = x
|
216 |
+
if self.normalize_before:
|
217 |
+
x = self.norm_conv(x)
|
218 |
+
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
219 |
+
x = residual + self.dropout(x)
|
220 |
+
|
221 |
+
if not self.normalize_before:
|
222 |
+
x = self.norm_conv(x)
|
223 |
+
|
224 |
+
# feed forward module
|
225 |
+
residual = x
|
226 |
+
if self.normalize_before:
|
227 |
+
x = self.norm_ff(x)
|
228 |
+
|
229 |
+
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
230 |
+
if not self.normalize_before:
|
231 |
+
x = self.norm_ff(x)
|
232 |
+
|
233 |
+
if self.conv_module is not None:
|
234 |
+
x = self.norm_final(x)
|
235 |
+
|
236 |
+
return x, mask, new_att_cache, new_cnn_cache
|
cosyvoice/transformer/label_smoothing_loss.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Label smoothing module."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
|
21 |
+
class LabelSmoothingLoss(nn.Module):
|
22 |
+
"""Label-smoothing loss.
|
23 |
+
|
24 |
+
In a standard CE loss, the label's data distribution is:
|
25 |
+
[0,1,2] ->
|
26 |
+
[
|
27 |
+
[1.0, 0.0, 0.0],
|
28 |
+
[0.0, 1.0, 0.0],
|
29 |
+
[0.0, 0.0, 1.0],
|
30 |
+
]
|
31 |
+
|
32 |
+
In the smoothing version CE Loss,some probabilities
|
33 |
+
are taken from the true label prob (1.0) and are divided
|
34 |
+
among other labels.
|
35 |
+
|
36 |
+
e.g.
|
37 |
+
smoothing=0.1
|
38 |
+
[0,1,2] ->
|
39 |
+
[
|
40 |
+
[0.9, 0.05, 0.05],
|
41 |
+
[0.05, 0.9, 0.05],
|
42 |
+
[0.05, 0.05, 0.9],
|
43 |
+
]
|
44 |
+
|
45 |
+
Args:
|
46 |
+
size (int): the number of class
|
47 |
+
padding_idx (int): padding class id which will be ignored for loss
|
48 |
+
smoothing (float): smoothing rate (0.0 means the conventional CE)
|
49 |
+
normalize_length (bool):
|
50 |
+
normalize loss by sequence length if True
|
51 |
+
normalize loss by batch size if False
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
size: int,
|
56 |
+
padding_idx: int,
|
57 |
+
smoothing: float,
|
58 |
+
normalize_length: bool = False):
|
59 |
+
"""Construct an LabelSmoothingLoss object."""
|
60 |
+
super(LabelSmoothingLoss, self).__init__()
|
61 |
+
self.criterion = nn.KLDivLoss(reduction="none")
|
62 |
+
self.padding_idx = padding_idx
|
63 |
+
self.confidence = 1.0 - smoothing
|
64 |
+
self.smoothing = smoothing
|
65 |
+
self.size = size
|
66 |
+
self.normalize_length = normalize_length
|
67 |
+
|
68 |
+
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
69 |
+
"""Compute loss between x and target.
|
70 |
+
|
71 |
+
The model outputs and data labels tensors are flatten to
|
72 |
+
(batch*seqlen, class) shape and a mask is applied to the
|
73 |
+
padding part which should not be calculated for loss.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
x (torch.Tensor): prediction (batch, seqlen, class)
|
77 |
+
target (torch.Tensor):
|
78 |
+
target signal masked with self.padding_id (batch, seqlen)
|
79 |
+
Returns:
|
80 |
+
loss (torch.Tensor) : The KL loss, scalar float value
|
81 |
+
"""
|
82 |
+
assert x.size(2) == self.size
|
83 |
+
batch_size = x.size(0)
|
84 |
+
x = x.view(-1, self.size)
|
85 |
+
target = target.view(-1)
|
86 |
+
# use zeros_like instead of torch.no_grad() for true_dist,
|
87 |
+
# since no_grad() can not be exported by JIT
|
88 |
+
true_dist = torch.zeros_like(x)
|
89 |
+
true_dist.fill_(self.smoothing / (self.size - 1))
|
90 |
+
ignore = target == self.padding_idx # (B,)
|
91 |
+
total = len(target) - ignore.sum().item()
|
92 |
+
target = target.masked_fill(ignore, 0) # avoid -1 index
|
93 |
+
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
94 |
+
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
95 |
+
denom = total if self.normalize_length else batch_size
|
96 |
+
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
cosyvoice/transformer/positionwise_feed_forward.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Positionwise feed forward layer definition."""
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
class PositionwiseFeedForward(torch.nn.Module):
|
21 |
+
"""Positionwise feed forward layer.
|
22 |
+
|
23 |
+
FeedForward are appied on each position of the sequence.
|
24 |
+
The output dim is same with the input dim.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
idim (int): Input dimenstion.
|
28 |
+
hidden_units (int): The number of hidden units.
|
29 |
+
dropout_rate (float): Dropout rate.
|
30 |
+
activation (torch.nn.Module): Activation function
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
idim: int,
|
36 |
+
hidden_units: int,
|
37 |
+
dropout_rate: float,
|
38 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
39 |
+
):
|
40 |
+
"""Construct a PositionwiseFeedForward object."""
|
41 |
+
super(PositionwiseFeedForward, self).__init__()
|
42 |
+
self.w_1 = torch.nn.Linear(idim, hidden_units)
|
43 |
+
self.activation = activation
|
44 |
+
self.dropout = torch.nn.Dropout(dropout_rate)
|
45 |
+
self.w_2 = torch.nn.Linear(hidden_units, idim)
|
46 |
+
|
47 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
48 |
+
"""Forward function.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
xs: input tensor (B, L, D)
|
52 |
+
Returns:
|
53 |
+
output tensor, (B, L, D)
|
54 |
+
"""
|
55 |
+
return self.w_2(self.dropout(self.activation(self.w_1(xs))))
|
56 |
+
|
57 |
+
|
58 |
+
class MoEFFNLayer(torch.nn.Module):
|
59 |
+
"""
|
60 |
+
Mixture of expert with Positionwise feed forward layer
|
61 |
+
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
|
62 |
+
The output dim is same with the input dim.
|
63 |
+
|
64 |
+
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
|
65 |
+
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
|
66 |
+
Args:
|
67 |
+
n_expert: number of expert.
|
68 |
+
n_expert_per_token: The actual number of experts used for each frame
|
69 |
+
idim (int): Input dimenstion.
|
70 |
+
hidden_units (int): The number of hidden units.
|
71 |
+
dropout_rate (float): Dropout rate.
|
72 |
+
activation (torch.nn.Module): Activation function
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
n_expert: int,
|
78 |
+
n_expert_per_token: int,
|
79 |
+
idim: int,
|
80 |
+
hidden_units: int,
|
81 |
+
dropout_rate: float,
|
82 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
83 |
+
):
|
84 |
+
super(MoEFFNLayer, self).__init__()
|
85 |
+
self.gate = torch.nn.Linear(idim, n_expert, bias=False)
|
86 |
+
self.experts = torch.nn.ModuleList(
|
87 |
+
PositionwiseFeedForward(idim, hidden_units, dropout_rate,
|
88 |
+
activation) for _ in range(n_expert))
|
89 |
+
self.n_expert_per_token = n_expert_per_token
|
90 |
+
|
91 |
+
def forward(self, xs: torch.Tensor) -> torch.Tensor:
|
92 |
+
"""Foward function.
|
93 |
+
Args:
|
94 |
+
xs: input tensor (B, L, D)
|
95 |
+
Returns:
|
96 |
+
output tensor, (B, L, D)
|
97 |
+
|
98 |
+
"""
|
99 |
+
B, L, D = xs.size(
|
100 |
+
) # batch size, sequence length, embedding dimension (idim)
|
101 |
+
xs = xs.view(-1, D) # (B*L, D)
|
102 |
+
router = self.gate(xs) # (B*L, n_expert)
|
103 |
+
logits, indices = torch.topk(
|
104 |
+
router, self.n_expert_per_token
|
105 |
+
) # probs:(B*L, n_expert), indices: (B*L, n_expert)
|
106 |
+
weights = torch.nn.functional.softmax(
|
107 |
+
logits, dim=1,
|
108 |
+
dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
|
109 |
+
output = torch.zeros_like(xs) # (B*L, D)
|
110 |
+
for i, expert in enumerate(self.experts):
|
111 |
+
mask = indices == i
|
112 |
+
batch_idx, ith_expert = torch.where(mask)
|
113 |
+
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
|
114 |
+
xs[batch_idx])
|
115 |
+
return output.view(B, L, D)
|
cosyvoice/transformer/subsampling.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Subsampling layer definition."""
|
17 |
+
|
18 |
+
from typing import Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
|
23 |
+
class BaseSubsampling(torch.nn.Module):
|
24 |
+
|
25 |
+
def __init__(self):
|
26 |
+
super().__init__()
|
27 |
+
self.right_context = 0
|
28 |
+
self.subsampling_rate = 1
|
29 |
+
|
30 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
31 |
+
size: int) -> torch.Tensor:
|
32 |
+
return self.pos_enc.position_encoding(offset, size)
|
33 |
+
|
34 |
+
|
35 |
+
class EmbedinigNoSubsampling(BaseSubsampling):
|
36 |
+
"""Embedding input without subsampling
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
40 |
+
pos_enc_class: torch.nn.Module):
|
41 |
+
super().__init__()
|
42 |
+
self.embed = torch.nn.Embedding(idim, odim)
|
43 |
+
self.pos_enc = pos_enc_class
|
44 |
+
|
45 |
+
def forward(
|
46 |
+
self,
|
47 |
+
x: torch.Tensor,
|
48 |
+
x_mask: torch.Tensor,
|
49 |
+
offset: Union[int, torch.Tensor] = 0
|
50 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
51 |
+
"""Input x.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
55 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
59 |
+
where time' = time .
|
60 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
61 |
+
where time' = time .
|
62 |
+
|
63 |
+
"""
|
64 |
+
x = self.embed(x)
|
65 |
+
x, pos_emb = self.pos_enc(x, offset)
|
66 |
+
return x, pos_emb, x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class LinearNoSubsampling(BaseSubsampling):
|
70 |
+
"""Linear transform the input without subsampling
|
71 |
+
|
72 |
+
Args:
|
73 |
+
idim (int): Input dimension.
|
74 |
+
odim (int): Output dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
80 |
+
pos_enc_class: torch.nn.Module):
|
81 |
+
"""Construct an linear object."""
|
82 |
+
super().__init__()
|
83 |
+
self.out = torch.nn.Sequential(
|
84 |
+
torch.nn.Linear(idim, odim),
|
85 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
86 |
+
torch.nn.Dropout(dropout_rate),
|
87 |
+
)
|
88 |
+
self.pos_enc = pos_enc_class
|
89 |
+
self.right_context = 0
|
90 |
+
self.subsampling_rate = 1
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
x: torch.Tensor,
|
95 |
+
x_mask: torch.Tensor,
|
96 |
+
offset: Union[int, torch.Tensor] = 0
|
97 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
98 |
+
"""Input x.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
102 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
106 |
+
where time' = time .
|
107 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
108 |
+
where time' = time .
|
109 |
+
|
110 |
+
"""
|
111 |
+
x = self.out(x)
|
112 |
+
x, pos_emb = self.pos_enc(x, offset)
|
113 |
+
return x, pos_emb, x_mask
|
114 |
+
|
115 |
+
|
116 |
+
class Conv1dSubsampling2(BaseSubsampling):
|
117 |
+
"""Convolutional 1D subsampling (to 1/2 length).
|
118 |
+
It is designed for Whisper, ref:
|
119 |
+
https://github.com/openai/whisper/blob/main/whisper/model.py
|
120 |
+
|
121 |
+
Args:
|
122 |
+
idim (int): Input dimension.
|
123 |
+
odim (int): Output dimension.
|
124 |
+
dropout_rate (float): Dropout rate.
|
125 |
+
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
129 |
+
pos_enc_class: torch.nn.Module):
|
130 |
+
"""Construct an Conv1dSubsampling2 object."""
|
131 |
+
super().__init__()
|
132 |
+
self.conv = torch.nn.Sequential(
|
133 |
+
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
|
134 |
+
torch.nn.GELU(),
|
135 |
+
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
|
136 |
+
torch.nn.GELU(),
|
137 |
+
)
|
138 |
+
self.pos_enc = pos_enc_class
|
139 |
+
# The right context for every conv layer is computed by:
|
140 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
141 |
+
self.subsampling_rate = 2
|
142 |
+
# 4 = (3 - 1) * 1 + (3 - 1) * 1
|
143 |
+
self.right_context = 4
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self,
|
147 |
+
x: torch.Tensor,
|
148 |
+
x_mask: torch.Tensor,
|
149 |
+
offset: Union[int, torch.Tensor] = 0
|
150 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
151 |
+
"""Subsample x.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
155 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
159 |
+
where time' = time // 2.
|
160 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
161 |
+
where time' = time // 2.
|
162 |
+
torch.Tensor: positional encoding
|
163 |
+
|
164 |
+
"""
|
165 |
+
time = x.size(1)
|
166 |
+
x = x.transpose(1, 2) # (b, f, t)
|
167 |
+
x = self.conv(x)
|
168 |
+
x = x.transpose(1, 2) # (b, t, f)
|
169 |
+
x, pos_emb = self.pos_enc(x, offset)
|
170 |
+
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
|
171 |
+
|
172 |
+
|
173 |
+
class Conv2dSubsampling4(BaseSubsampling):
|
174 |
+
"""Convolutional 2D subsampling (to 1/4 length).
|
175 |
+
|
176 |
+
Args:
|
177 |
+
idim (int): Input dimension.
|
178 |
+
odim (int): Output dimension.
|
179 |
+
dropout_rate (float): Dropout rate.
|
180 |
+
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
184 |
+
pos_enc_class: torch.nn.Module):
|
185 |
+
"""Construct an Conv2dSubsampling4 object."""
|
186 |
+
super().__init__()
|
187 |
+
self.conv = torch.nn.Sequential(
|
188 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
189 |
+
torch.nn.ReLU(),
|
190 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
191 |
+
torch.nn.ReLU(),
|
192 |
+
)
|
193 |
+
self.out = torch.nn.Sequential(
|
194 |
+
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
|
195 |
+
self.pos_enc = pos_enc_class
|
196 |
+
# The right context for every conv layer is computed by:
|
197 |
+
# (kernel_size - 1) * frame_rate_of_this_layer
|
198 |
+
self.subsampling_rate = 4
|
199 |
+
# 6 = (3 - 1) * 1 + (3 - 1) * 2
|
200 |
+
self.right_context = 6
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
x: torch.Tensor,
|
205 |
+
x_mask: torch.Tensor,
|
206 |
+
offset: Union[int, torch.Tensor] = 0
|
207 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
208 |
+
"""Subsample x.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
212 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
216 |
+
where time' = time // 4.
|
217 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
218 |
+
where time' = time // 4.
|
219 |
+
torch.Tensor: positional encoding
|
220 |
+
|
221 |
+
"""
|
222 |
+
x = x.unsqueeze(1) # (b, c=1, t, f)
|
223 |
+
x = self.conv(x)
|
224 |
+
b, c, t, f = x.size()
|
225 |
+
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
226 |
+
x, pos_emb = self.pos_enc(x, offset)
|
227 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
|
228 |
+
|
229 |
+
|
230 |
+
class Conv2dSubsampling6(BaseSubsampling):
|
231 |
+
"""Convolutional 2D subsampling (to 1/6 length).
|
232 |
+
Args:
|
233 |
+
idim (int): Input dimension.
|
234 |
+
odim (int): Output dimension.
|
235 |
+
dropout_rate (float): Dropout rate.
|
236 |
+
pos_enc (torch.nn.Module): Custom position encoding layer.
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
240 |
+
pos_enc_class: torch.nn.Module):
|
241 |
+
"""Construct an Conv2dSubsampling6 object."""
|
242 |
+
super().__init__()
|
243 |
+
self.conv = torch.nn.Sequential(
|
244 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
245 |
+
torch.nn.ReLU(),
|
246 |
+
torch.nn.Conv2d(odim, odim, 5, 3),
|
247 |
+
torch.nn.ReLU(),
|
248 |
+
)
|
249 |
+
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
|
250 |
+
odim)
|
251 |
+
self.pos_enc = pos_enc_class
|
252 |
+
# 10 = (3 - 1) * 1 + (5 - 1) * 2
|
253 |
+
self.subsampling_rate = 6
|
254 |
+
self.right_context = 10
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
x: torch.Tensor,
|
259 |
+
x_mask: torch.Tensor,
|
260 |
+
offset: Union[int, torch.Tensor] = 0
|
261 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
262 |
+
"""Subsample x.
|
263 |
+
Args:
|
264 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
265 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
269 |
+
where time' = time // 6.
|
270 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
271 |
+
where time' = time // 6.
|
272 |
+
torch.Tensor: positional encoding
|
273 |
+
"""
|
274 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
275 |
+
x = self.conv(x)
|
276 |
+
b, c, t, f = x.size()
|
277 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
278 |
+
x, pos_emb = self.pos_enc(x, offset)
|
279 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
|
280 |
+
|
281 |
+
|
282 |
+
class Conv2dSubsampling8(BaseSubsampling):
|
283 |
+
"""Convolutional 2D subsampling (to 1/8 length).
|
284 |
+
|
285 |
+
Args:
|
286 |
+
idim (int): Input dimension.
|
287 |
+
odim (int): Output dimension.
|
288 |
+
dropout_rate (float): Dropout rate.
|
289 |
+
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
293 |
+
pos_enc_class: torch.nn.Module):
|
294 |
+
"""Construct an Conv2dSubsampling8 object."""
|
295 |
+
super().__init__()
|
296 |
+
self.conv = torch.nn.Sequential(
|
297 |
+
torch.nn.Conv2d(1, odim, 3, 2),
|
298 |
+
torch.nn.ReLU(),
|
299 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
300 |
+
torch.nn.ReLU(),
|
301 |
+
torch.nn.Conv2d(odim, odim, 3, 2),
|
302 |
+
torch.nn.ReLU(),
|
303 |
+
)
|
304 |
+
self.linear = torch.nn.Linear(
|
305 |
+
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
|
306 |
+
self.pos_enc = pos_enc_class
|
307 |
+
self.subsampling_rate = 8
|
308 |
+
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
|
309 |
+
self.right_context = 14
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
x: torch.Tensor,
|
314 |
+
x_mask: torch.Tensor,
|
315 |
+
offset: Union[int, torch.Tensor] = 0
|
316 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
317 |
+
"""Subsample x.
|
318 |
+
|
319 |
+
Args:
|
320 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
321 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
torch.Tensor: Subsampled tensor (#batch, time', odim),
|
325 |
+
where time' = time // 8.
|
326 |
+
torch.Tensor: Subsampled mask (#batch, 1, time'),
|
327 |
+
where time' = time // 8.
|
328 |
+
torch.Tensor: positional encoding
|
329 |
+
"""
|
330 |
+
x = x.unsqueeze(1) # (b, c, t, f)
|
331 |
+
x = self.conv(x)
|
332 |
+
b, c, t, f = x.size()
|
333 |
+
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
334 |
+
x, pos_emb = self.pos_enc(x, offset)
|
335 |
+
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
|
336 |
+
|
337 |
+
|
338 |
+
class LegacyLinearNoSubsampling(BaseSubsampling):
|
339 |
+
"""Linear transform the input without subsampling
|
340 |
+
|
341 |
+
Args:
|
342 |
+
idim (int): Input dimension.
|
343 |
+
odim (int): Output dimension.
|
344 |
+
dropout_rate (float): Dropout rate.
|
345 |
+
|
346 |
+
"""
|
347 |
+
|
348 |
+
def __init__(self, idim: int, odim: int, dropout_rate: float,
|
349 |
+
pos_enc_class: torch.nn.Module):
|
350 |
+
"""Construct an linear object."""
|
351 |
+
super().__init__()
|
352 |
+
self.out = torch.nn.Sequential(
|
353 |
+
torch.nn.Linear(idim, odim),
|
354 |
+
torch.nn.LayerNorm(odim, eps=1e-5),
|
355 |
+
torch.nn.Dropout(dropout_rate),
|
356 |
+
torch.nn.ReLU(),
|
357 |
+
)
|
358 |
+
self.pos_enc = pos_enc_class
|
359 |
+
self.right_context = 0
|
360 |
+
self.subsampling_rate = 1
|
361 |
+
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
x: torch.Tensor,
|
365 |
+
x_mask: torch.Tensor,
|
366 |
+
offset: Union[int, torch.Tensor] = 0
|
367 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
368 |
+
"""Input x.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
x (torch.Tensor): Input tensor (#batch, time, idim).
|
372 |
+
x_mask (torch.Tensor): Input mask (#batch, 1, time).
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
torch.Tensor: linear input tensor (#batch, time', odim),
|
376 |
+
where time' = time .
|
377 |
+
torch.Tensor: linear input mask (#batch, 1, time'),
|
378 |
+
where time' = time .
|
379 |
+
|
380 |
+
"""
|
381 |
+
x = self.out(x)
|
382 |
+
x, pos_emb = self.pos_enc(x, offset)
|
383 |
+
return x, pos_emb, x_mask
|
cosyvoice/utils/__init__.py
ADDED
File without changes
|
cosyvoice/utils/block_mask_util.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def create_grid_mask(seq_length, trunck_length, fill_triangle):
|
5 |
+
assert seq_length > 0
|
6 |
+
|
7 |
+
# 先不考虑seen_length创建一个grid mask:
|
8 |
+
if fill_triangle:
|
9 |
+
mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1)
|
10 |
+
# 下三角与主对角线都为1
|
11 |
+
else:
|
12 |
+
mask = torch.zeros(seq_length, seq_length)
|
13 |
+
|
14 |
+
for i in range(seq_length):
|
15 |
+
trunck_idx = i // trunck_length
|
16 |
+
trunck_start = trunck_idx * trunck_length
|
17 |
+
trunck_end = trunck_length + trunck_start
|
18 |
+
mask[i][trunck_start:trunck_end] = 1
|
19 |
+
|
20 |
+
return mask
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
mask = create_grid_mask(seq_length=8, trunck_length=3, fill_triangle=True).int()
|
25 |
+
print(mask)
|
26 |
+
# tensor([[1, 1, 1, 0, 0, 0, 0, 0],
|
27 |
+
# [1, 1, 1, 0, 0, 0, 0, 0],
|
28 |
+
# [1, 1, 1, 0, 0, 0, 0, 0],
|
29 |
+
# [1, 1, 1, 1, 1, 1, 0, 0],
|
30 |
+
# [1, 1, 1, 1, 1, 1, 0, 0],
|
31 |
+
# [1, 1, 1, 1, 1, 1, 0, 0],
|
32 |
+
# [1, 1, 1, 1, 1, 1, 1, 1],
|
33 |
+
# [1, 1, 1, 1, 1, 1, 1, 1]]
|
34 |
+
|
cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <sxc19@mails.tsinghua.edu.cn, Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention,
|
33 |
+
BlockRelPositionMultiHeadedAttention)
|
34 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
35 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
36 |
+
|
37 |
+
|
38 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
39 |
+
"hardtanh": torch.nn.Hardtanh,
|
40 |
+
"tanh": torch.nn.Tanh,
|
41 |
+
"relu": torch.nn.ReLU,
|
42 |
+
"selu": torch.nn.SELU,
|
43 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
44 |
+
"gelu": torch.nn.GELU,
|
45 |
+
}
|
46 |
+
|
47 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
48 |
+
"linear": LinearNoSubsampling,
|
49 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
50 |
+
"embed": EmbedinigNoSubsampling,
|
51 |
+
"conv1d2": Conv1dSubsampling2,
|
52 |
+
"conv2d": Conv2dSubsampling4,
|
53 |
+
"conv2d6": Conv2dSubsampling6,
|
54 |
+
"conv2d8": Conv2dSubsampling8,
|
55 |
+
'paraformer_dummy': torch.nn.Identity
|
56 |
+
}
|
57 |
+
|
58 |
+
COSYVOICE_EMB_CLASSES = {
|
59 |
+
"embed": PositionalEncoding,
|
60 |
+
"abs_pos": PositionalEncoding,
|
61 |
+
"rel_pos": RelPositionalEncoding,
|
62 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
63 |
+
"no_pos": NoPositionalEncoding,
|
64 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
65 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
66 |
+
}
|
67 |
+
|
68 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
69 |
+
"selfattn": MultiHeadedAttention,
|
70 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
71 |
+
"block_rel_selfattn": BlockRelPositionMultiHeadedAttention,
|
72 |
+
}
|
cosyvoice/utils/common.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Unility functions for Transformer."""
|
17 |
+
|
18 |
+
from typing import List
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
IGNORE_ID = -1
|
23 |
+
|
24 |
+
|
25 |
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
26 |
+
"""Perform padding for the list of tensors.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
30 |
+
pad_value (float): Value for padding.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
34 |
+
|
35 |
+
Examples:
|
36 |
+
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
37 |
+
>>> x
|
38 |
+
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
39 |
+
>>> pad_list(x, 0)
|
40 |
+
tensor([[1., 1., 1., 1.],
|
41 |
+
[1., 1., 0., 0.],
|
42 |
+
[1., 0., 0., 0.]])
|
43 |
+
|
44 |
+
"""
|
45 |
+
max_len = max([len(item) for item in xs])
|
46 |
+
batchs = len(xs)
|
47 |
+
ndim = xs[0].ndim
|
48 |
+
if ndim == 1:
|
49 |
+
pad_res = torch.zeros(batchs,
|
50 |
+
max_len,
|
51 |
+
dtype=xs[0].dtype,
|
52 |
+
device=xs[0].device)
|
53 |
+
elif ndim == 2:
|
54 |
+
pad_res = torch.zeros(batchs,
|
55 |
+
max_len,
|
56 |
+
xs[0].shape[1],
|
57 |
+
dtype=xs[0].dtype,
|
58 |
+
device=xs[0].device)
|
59 |
+
elif ndim == 3:
|
60 |
+
pad_res = torch.zeros(batchs,
|
61 |
+
max_len,
|
62 |
+
xs[0].shape[1],
|
63 |
+
xs[0].shape[2],
|
64 |
+
dtype=xs[0].dtype,
|
65 |
+
device=xs[0].device)
|
66 |
+
else:
|
67 |
+
raise ValueError(f"Unsupported ndim: {ndim}")
|
68 |
+
pad_res.fill_(pad_value)
|
69 |
+
for i in range(batchs):
|
70 |
+
pad_res[i, :len(xs[i])] = xs[i]
|
71 |
+
return pad_res
|
72 |
+
|
73 |
+
|
74 |
+
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
75 |
+
ignore_label: int) -> torch.Tensor:
|
76 |
+
"""Calculate accuracy.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
80 |
+
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
81 |
+
ignore_label (int): Ignore label id.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Accuracy value (0.0 - 1.0).
|
85 |
+
|
86 |
+
"""
|
87 |
+
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
88 |
+
pad_outputs.size(1)).argmax(2)
|
89 |
+
mask = pad_targets != ignore_label
|
90 |
+
numerator = torch.sum(
|
91 |
+
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
92 |
+
denominator = torch.sum(mask)
|
93 |
+
return (numerator / denominator).detach()
|
94 |
+
|
95 |
+
|
96 |
+
def get_padding(kernel_size, dilation=1):
|
97 |
+
return int((kernel_size * dilation - dilation) / 2)
|
98 |
+
|
99 |
+
|
100 |
+
def init_weights(m, mean=0.0, std=0.01):
|
101 |
+
classname = m.__class__.__name__
|
102 |
+
if classname.find("Conv") != -1:
|
103 |
+
m.weight.data.normal_(mean, std)
|
cosyvoice/utils/executor.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import logging
|
17 |
+
from contextlib import nullcontext
|
18 |
+
import os
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.distributed as dist
|
22 |
+
import tqdm
|
23 |
+
|
24 |
+
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
25 |
+
|
26 |
+
|
27 |
+
class Executor:
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
self.step = 0
|
31 |
+
self.epoch = 0
|
32 |
+
self.rank = int(os.environ.get('RANK', 0))
|
33 |
+
self.device = torch.device('cuda:{}'.format(self.rank))
|
34 |
+
|
35 |
+
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join):
|
36 |
+
''' Train one epoch
|
37 |
+
'''
|
38 |
+
|
39 |
+
lr = optimizer.param_groups[0]['lr']
|
40 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
41 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
42 |
+
' larger than before'.format(info_dict['accum_grad']))
|
43 |
+
# A context manager to be used in conjunction with an instance of
|
44 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
45 |
+
# with uneven inputs across participating processes.
|
46 |
+
model.train()
|
47 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
48 |
+
with model_context():
|
49 |
+
for batch_idx, batch_dict in tqdm.tqdm(enumerate(train_data_loader)):
|
50 |
+
# print("======== forword ========")
|
51 |
+
info_dict["tag"] = "TRAIN"
|
52 |
+
info_dict["step"] = self.step
|
53 |
+
info_dict["epoch"] = self.epoch
|
54 |
+
info_dict["batch_idx"] = batch_idx
|
55 |
+
if cosyvoice_join(group_join, info_dict):
|
56 |
+
break
|
57 |
+
# import pdb
|
58 |
+
# pdb.set_trace()
|
59 |
+
# Disable gradient synchronizations across DDP processes.
|
60 |
+
# Within this context, gradients will be accumulated on module
|
61 |
+
# variables, which will later be synchronized.
|
62 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
63 |
+
context = model.no_sync
|
64 |
+
# Used for single gpu training and DDP gradient synchronization
|
65 |
+
# processes.
|
66 |
+
else:
|
67 |
+
context = nullcontext
|
68 |
+
|
69 |
+
new_batch_dict={
|
70 |
+
# "utts":batch_dict["utts"],
|
71 |
+
"speech_token":batch_dict["speech_token"],
|
72 |
+
"speech_token_len":batch_dict["speech_token_len"],
|
73 |
+
"speech_feat":batch_dict["speech_feat"],
|
74 |
+
"speech_feat_len":batch_dict["speech_feat_len"],
|
75 |
+
"embedding":batch_dict["embedding"],
|
76 |
+
# "embedding":torch.zeros((batch_dict["speech_feat"].size(0),192),device=batch_dict["speech_feat"].device)
|
77 |
+
}
|
78 |
+
|
79 |
+
with context():
|
80 |
+
info_dict = batch_forward(model, new_batch_dict, info_dict)
|
81 |
+
info_dict = batch_backward(model, info_dict)
|
82 |
+
|
83 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict)
|
84 |
+
log_per_step(writer, info_dict)
|
85 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
86 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
87 |
+
dist.barrier()
|
88 |
+
# try:
|
89 |
+
# dist.barrier()
|
90 |
+
# except RuntimeError as e:
|
91 |
+
# logging.info('except RuntimeError as e: {}'.format(e))
|
92 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
93 |
+
model.train()
|
94 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
95 |
+
self.step += 1
|
96 |
+
dist.barrier()
|
97 |
+
# try:
|
98 |
+
# dist.barrier()
|
99 |
+
# except RuntimeError as e:
|
100 |
+
# logging.info('except RuntimeError as e: {}'.format(e))
|
101 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
102 |
+
|
103 |
+
@torch.inference_mode()
|
104 |
+
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
105 |
+
''' Cross validation on
|
106 |
+
'''
|
107 |
+
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
108 |
+
model.eval()
|
109 |
+
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
110 |
+
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
111 |
+
info_dict["tag"] = "CV"
|
112 |
+
info_dict["step"] = self.step
|
113 |
+
info_dict["epoch"] = self.epoch
|
114 |
+
info_dict["batch_idx"] = batch_idx
|
115 |
+
|
116 |
+
# num_utts = len(batch_dict["utts"])
|
117 |
+
num_utts=batch_dict["speech_token"].size(0)
|
118 |
+
total_num_utts += num_utts
|
119 |
+
|
120 |
+
info_dict = batch_forward(model, batch_dict, info_dict)
|
121 |
+
|
122 |
+
for k, v in info_dict['loss_dict'].items():
|
123 |
+
if k not in total_loss_dict:
|
124 |
+
total_loss_dict[k] = []
|
125 |
+
total_loss_dict[k].append(v.item() * num_utts)
|
126 |
+
log_per_step(None, info_dict)
|
127 |
+
for k, v in total_loss_dict.items():
|
128 |
+
total_loss_dict[k] = sum(v) / total_num_utts
|
129 |
+
info_dict['loss_dict'] = total_loss_dict
|
130 |
+
log_per_save(writer, info_dict)
|
131 |
+
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
132 |
+
save_model(model, model_name, info_dict)
|
cosyvoice/utils/file_utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import torchaudio
|
18 |
+
|
19 |
+
|
20 |
+
def read_lists(list_file):
|
21 |
+
lists = []
|
22 |
+
with open(list_file, 'r', encoding='utf8') as fin:
|
23 |
+
for line in fin:
|
24 |
+
lists.append(line.strip())
|
25 |
+
return lists
|
26 |
+
|
27 |
+
def read_json_lists(list_file):
|
28 |
+
lists = read_lists(list_file)
|
29 |
+
results = {}
|
30 |
+
for fn in lists:
|
31 |
+
with open(fn, 'r', encoding='utf8') as fin:
|
32 |
+
results.update(json.load(fin))
|
33 |
+
return results
|
34 |
+
|
35 |
+
def load_wav(wav, target_sr):
|
36 |
+
speech, sample_rate = torchaudio.load(wav)
|
37 |
+
speech = speech.mean(dim=0, keepdim=True)
|
38 |
+
if sample_rate != target_sr:
|
39 |
+
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
40 |
+
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
41 |
+
return speech
|
42 |
+
|
43 |
+
def speed_change(waveform, sample_rate, speed_factor: str):
|
44 |
+
effects = [
|
45 |
+
["tempo", speed_factor], # speed_factor
|
46 |
+
["rate", f"{sample_rate}"]
|
47 |
+
]
|
48 |
+
augmented_waveform, new_sample_rate = torchaudio.sox_effects.apply_effects_tensor(
|
49 |
+
waveform,
|
50 |
+
sample_rate,
|
51 |
+
effects
|
52 |
+
)
|
53 |
+
return augmented_waveform, new_sample_rate
|
cosyvoice/utils/frontend_utils.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
17 |
+
|
18 |
+
# whether contain chinese character
|
19 |
+
def contains_chinese(text):
|
20 |
+
return bool(chinese_char_pattern.search(text))
|
21 |
+
|
22 |
+
|
23 |
+
# replace special symbol
|
24 |
+
def replace_corner_mark(text):
|
25 |
+
text = text.replace('²', '平方')
|
26 |
+
text = text.replace('³', '立方')
|
27 |
+
return text
|
28 |
+
|
29 |
+
|
30 |
+
# remove meaningless symbol
|
31 |
+
def remove_bracket(text):
|
32 |
+
text = text.replace('(', '').replace(')', '')
|
33 |
+
text = text.replace('【', '').replace('】', '')
|
34 |
+
text = text.replace('`', '').replace('`', '')
|
35 |
+
text = text.replace("——", " ")
|
36 |
+
return text
|
37 |
+
|
38 |
+
|
39 |
+
# spell Arabic numerals
|
40 |
+
def spell_out_number(text: str, inflect_parser):
|
41 |
+
new_text = []
|
42 |
+
st = None
|
43 |
+
for i, c in enumerate(text):
|
44 |
+
if not c.isdigit():
|
45 |
+
if st is not None:
|
46 |
+
num_str = inflect_parser.number_to_words(text[st: i])
|
47 |
+
new_text.append(num_str)
|
48 |
+
st = None
|
49 |
+
new_text.append(c)
|
50 |
+
else:
|
51 |
+
if st is None:
|
52 |
+
st = i
|
53 |
+
if st is not None and st < len(text):
|
54 |
+
num_str = inflect_parser.number_to_words(text[st:])
|
55 |
+
new_text.append(num_str)
|
56 |
+
return ''.join(new_text)
|
57 |
+
|
58 |
+
|
59 |
+
# split paragrah logic:
|
60 |
+
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
61 |
+
# 2. cal sentence len according to lang
|
62 |
+
# 3. split sentence according to puncatation
|
63 |
+
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
64 |
+
def calc_utt_length(_text: str):
|
65 |
+
if lang == "zh":
|
66 |
+
return len(_text)
|
67 |
+
else:
|
68 |
+
return len(tokenize(_text))
|
69 |
+
|
70 |
+
def should_merge(_text: str):
|
71 |
+
if lang == "zh":
|
72 |
+
return len(_text) < merge_len
|
73 |
+
else:
|
74 |
+
return len(tokenize(_text)) < merge_len
|
75 |
+
|
76 |
+
if lang == "zh":
|
77 |
+
pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
|
78 |
+
else:
|
79 |
+
pounc = ['.', '?', '!', ';', ':']
|
80 |
+
if comma_split:
|
81 |
+
pounc.extend([',', ','])
|
82 |
+
st = 0
|
83 |
+
utts = []
|
84 |
+
for i, c in enumerate(text):
|
85 |
+
if c in pounc:
|
86 |
+
if len(text[st: i]) > 0:
|
87 |
+
utts.append(text[st: i] + c)
|
88 |
+
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
89 |
+
tmp = utts.pop(-1)
|
90 |
+
utts.append(tmp + text[i + 1])
|
91 |
+
st = i + 2
|
92 |
+
else:
|
93 |
+
st = i + 1
|
94 |
+
if len(utts) == 0:
|
95 |
+
if lang == "zh":
|
96 |
+
utts.append(text + '。')
|
97 |
+
else:
|
98 |
+
utts.append(text + '.')
|
99 |
+
final_utts = []
|
100 |
+
cur_utt = ""
|
101 |
+
for utt in utts:
|
102 |
+
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
103 |
+
final_utts.append(cur_utt)
|
104 |
+
cur_utt = ""
|
105 |
+
cur_utt = cur_utt + utt
|
106 |
+
if len(cur_utt) > 0:
|
107 |
+
if should_merge(cur_utt) and len(final_utts) != 0:
|
108 |
+
final_utts[-1] = final_utts[-1] + cur_utt
|
109 |
+
else:
|
110 |
+
final_utts.append(cur_utt)
|
111 |
+
|
112 |
+
return final_utts
|
113 |
+
|
114 |
+
|
115 |
+
# remove blank between chinese character
|
116 |
+
def replace_blank(text: str):
|
117 |
+
out_str = []
|
118 |
+
for i, c in enumerate(text):
|
119 |
+
if c == " ":
|
120 |
+
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
121 |
+
(text[i - 1].isascii() and text[i - 1] != " ")):
|
122 |
+
out_str.append(c)
|
123 |
+
else:
|
124 |
+
out_str.append(c)
|
125 |
+
return "".join(out_str)
|
cosyvoice/utils/mask.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import torch
|
18 |
+
'''
|
19 |
+
def subsequent_mask(
|
20 |
+
size: int,
|
21 |
+
device: torch.device = torch.device("cpu"),
|
22 |
+
) -> torch.Tensor:
|
23 |
+
"""Create mask for subsequent steps (size, size).
|
24 |
+
|
25 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
26 |
+
This means the current step could only do attention with its left steps.
|
27 |
+
|
28 |
+
In encoder, fully attention is used when streaming is not necessary and
|
29 |
+
the sequence is not long. In this case, no attention mask is needed.
|
30 |
+
|
31 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
32 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
size (int): size of mask
|
36 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
37 |
+
dtype (torch.device): result dtype
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: mask
|
41 |
+
|
42 |
+
Examples:
|
43 |
+
>>> subsequent_mask(3)
|
44 |
+
[[1, 0, 0],
|
45 |
+
[1, 1, 0],
|
46 |
+
[1, 1, 1]]
|
47 |
+
"""
|
48 |
+
ret = torch.ones(size, size, device=device, dtype=torch.bool)
|
49 |
+
return torch.tril(ret)
|
50 |
+
'''
|
51 |
+
|
52 |
+
|
53 |
+
def subsequent_mask(
|
54 |
+
size: int,
|
55 |
+
device: torch.device = torch.device("cpu"),
|
56 |
+
) -> torch.Tensor:
|
57 |
+
"""Create mask for subsequent steps (size, size).
|
58 |
+
|
59 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
60 |
+
This means the current step could only do attention with its left steps.
|
61 |
+
|
62 |
+
In encoder, fully attention is used when streaming is not necessary and
|
63 |
+
the sequence is not long. In this case, no attention mask is needed.
|
64 |
+
|
65 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
66 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
size (int): size of mask
|
70 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
71 |
+
dtype (torch.device): result dtype
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
torch.Tensor: mask
|
75 |
+
|
76 |
+
Examples:
|
77 |
+
>>> subsequent_mask(3)
|
78 |
+
[[1, 0, 0],
|
79 |
+
[1, 1, 0],
|
80 |
+
[1, 1, 1]]
|
81 |
+
"""
|
82 |
+
arange = torch.arange(size, device=device)
|
83 |
+
mask = arange.expand(size, size)
|
84 |
+
arange = arange.unsqueeze(-1)
|
85 |
+
mask = mask <= arange
|
86 |
+
return mask
|
87 |
+
|
88 |
+
|
89 |
+
def subsequent_chunk_mask(
|
90 |
+
size: int,
|
91 |
+
chunk_size: int,
|
92 |
+
num_left_chunks: int = -1,
|
93 |
+
device: torch.device = torch.device("cpu"),
|
94 |
+
) -> torch.Tensor:
|
95 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
96 |
+
this is for streaming encoder
|
97 |
+
|
98 |
+
Args:
|
99 |
+
size (int): size of mask
|
100 |
+
chunk_size (int): size of chunk
|
101 |
+
num_left_chunks (int): number of left chunks
|
102 |
+
<0: use full chunk
|
103 |
+
>=0: use num_left_chunks
|
104 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
torch.Tensor: mask
|
108 |
+
|
109 |
+
Examples:
|
110 |
+
>>> subsequent_chunk_mask(4, 2)
|
111 |
+
[[1, 1, 0, 0],
|
112 |
+
[1, 1, 0, 0],
|
113 |
+
[1, 1, 1, 1],
|
114 |
+
[1, 1, 1, 1]]
|
115 |
+
"""
|
116 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
117 |
+
for i in range(size):
|
118 |
+
if num_left_chunks < 0:
|
119 |
+
start = 0
|
120 |
+
else:
|
121 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
122 |
+
ending = min((i // chunk_size + 1) * chunk_size, size)
|
123 |
+
ret[i, start:ending] = True
|
124 |
+
return ret
|
125 |
+
|
126 |
+
|
127 |
+
def add_optional_chunk_mask(xs: torch.Tensor,
|
128 |
+
masks: torch.Tensor,
|
129 |
+
use_dynamic_chunk: bool,
|
130 |
+
use_dynamic_left_chunk: bool,
|
131 |
+
decoding_chunk_size: int,
|
132 |
+
static_chunk_size: int,
|
133 |
+
num_decoding_left_chunks: int,
|
134 |
+
enable_full_context: bool = True):
|
135 |
+
""" Apply optional mask for encoder.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
xs (torch.Tensor): padded input, (B, L, D), L for max length
|
139 |
+
mask (torch.Tensor): mask for xs, (B, 1, L)
|
140 |
+
use_dynamic_chunk (bool): whether to use dynamic chunk or not
|
141 |
+
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
|
142 |
+
training.
|
143 |
+
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
|
144 |
+
0: default for training, use random dynamic chunk.
|
145 |
+
<0: for decoding, use full chunk.
|
146 |
+
>0: for decoding, use fixed chunk size as set.
|
147 |
+
static_chunk_size (int): chunk size for static chunk training/decoding
|
148 |
+
if it's greater than 0, if use_dynamic_chunk is true,
|
149 |
+
this parameter will be ignored
|
150 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
151 |
+
the chunk size is decoding_chunk_size.
|
152 |
+
>=0: use num_decoding_left_chunks
|
153 |
+
<0: use all left chunks
|
154 |
+
enable_full_context (bool):
|
155 |
+
True: chunk size is either [1, 25] or full context(max_len)
|
156 |
+
False: chunk size ~ U[1, 25]
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
torch.Tensor: chunk mask of the input xs.
|
160 |
+
"""
|
161 |
+
# Whether to use chunk mask or not
|
162 |
+
if use_dynamic_chunk:
|
163 |
+
max_len = xs.size(1)
|
164 |
+
if decoding_chunk_size < 0:
|
165 |
+
chunk_size = max_len
|
166 |
+
num_left_chunks = -1
|
167 |
+
elif decoding_chunk_size > 0:
|
168 |
+
chunk_size = decoding_chunk_size
|
169 |
+
num_left_chunks = num_decoding_left_chunks
|
170 |
+
else:
|
171 |
+
# chunk size is either [1, 25] or full context(max_len).
|
172 |
+
# Since we use 4 times subsampling and allow up to 1s(100 frames)
|
173 |
+
# delay, the maximum frame is 100 / 4 = 25.
|
174 |
+
chunk_size = torch.randint(1, max_len, (1, )).item()
|
175 |
+
num_left_chunks = -1
|
176 |
+
if chunk_size > max_len // 2 and enable_full_context:
|
177 |
+
chunk_size = max_len
|
178 |
+
else:
|
179 |
+
chunk_size = chunk_size % 25 + 1
|
180 |
+
if use_dynamic_left_chunk:
|
181 |
+
max_left_chunks = (max_len - 1) // chunk_size
|
182 |
+
num_left_chunks = torch.randint(0, max_left_chunks,
|
183 |
+
(1, )).item()
|
184 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
|
185 |
+
num_left_chunks,
|
186 |
+
xs.device) # (L, L)
|
187 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
188 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
189 |
+
elif static_chunk_size > 0:
|
190 |
+
num_left_chunks = num_decoding_left_chunks
|
191 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
|
192 |
+
num_left_chunks,
|
193 |
+
xs.device) # (L, L)
|
194 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
195 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
196 |
+
else:
|
197 |
+
chunk_masks = masks
|
198 |
+
return chunk_masks
|
199 |
+
|
200 |
+
|
201 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
202 |
+
"""Make mask tensor containing indices of padded part.
|
203 |
+
|
204 |
+
See description of make_non_pad_mask.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
lengths (torch.Tensor): Batch of lengths (B,).
|
208 |
+
Returns:
|
209 |
+
torch.Tensor: Mask tensor containing indices of padded part.
|
210 |
+
|
211 |
+
Examples:
|
212 |
+
>>> lengths = [5, 3, 2]
|
213 |
+
>>> make_pad_mask(lengths)
|
214 |
+
masks = [[0, 0, 0, 0 ,0],
|
215 |
+
[0, 0, 0, 1, 1],
|
216 |
+
[0, 0, 1, 1, 1]]
|
217 |
+
"""
|
218 |
+
batch_size = lengths.size(0)
|
219 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
220 |
+
seq_range = torch.arange(0,
|
221 |
+
max_len,
|
222 |
+
dtype=torch.int64,
|
223 |
+
device=lengths.device)
|
224 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
225 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
226 |
+
mask = seq_range_expand >= seq_length_expand
|
227 |
+
return mask
|
cosyvoice/utils/scheduler.py
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2022 Ximalaya Inc (Yuguang Yang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
# NeMo(https://github.com/NVIDIA/NeMo)
|
18 |
+
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
import torch
|
24 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
25 |
+
|
26 |
+
|
27 |
+
class WarmupLR(_LRScheduler):
|
28 |
+
"""The WarmupLR scheduler
|
29 |
+
|
30 |
+
This scheduler is almost same as NoamLR Scheduler except for following
|
31 |
+
difference:
|
32 |
+
|
33 |
+
NoamLR:
|
34 |
+
lr = optimizer.lr * model_size ** -0.5
|
35 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
36 |
+
WarmupLR:
|
37 |
+
lr = optimizer.lr * warmup_step ** 0.5
|
38 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
39 |
+
|
40 |
+
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
optimizer: torch.optim.Optimizer,
|
47 |
+
warmup_steps: Union[int, float] = 25000,
|
48 |
+
last_epoch: int = -1,
|
49 |
+
):
|
50 |
+
self.warmup_steps = warmup_steps
|
51 |
+
|
52 |
+
# __init__() must be invoked before setting field
|
53 |
+
# because step() is also invoked in __init__()
|
54 |
+
super().__init__(optimizer, last_epoch)
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
58 |
+
|
59 |
+
def get_lr(self):
|
60 |
+
step_num = self.last_epoch + 1
|
61 |
+
if self.warmup_steps == 0:
|
62 |
+
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
63 |
+
else:
|
64 |
+
return [
|
65 |
+
lr * self.warmup_steps**0.5 *
|
66 |
+
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
67 |
+
for lr in self.base_lrs
|
68 |
+
]
|
69 |
+
|
70 |
+
def set_step(self, step: int):
|
71 |
+
self.last_epoch = step
|
72 |
+
|
73 |
+
|
74 |
+
class WarmupPolicy(_LRScheduler):
|
75 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
76 |
+
All arguments should be passed as kwargs for clarity,
|
77 |
+
Args:
|
78 |
+
warmup_steps: Number of training steps in warmup stage
|
79 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
80 |
+
max_steps: Total number of steps while training or `None` for
|
81 |
+
infinite training
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self,
|
85 |
+
optimizer,
|
86 |
+
*,
|
87 |
+
warmup_steps=None,
|
88 |
+
warmup_ratio=None,
|
89 |
+
max_steps=None,
|
90 |
+
min_lr=0.0,
|
91 |
+
last_epoch=-1):
|
92 |
+
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
93 |
+
"Either use particular number of step or ratio"
|
94 |
+
assert warmup_ratio is None or max_steps is not None, \
|
95 |
+
"If there is a ratio, there should be a total steps"
|
96 |
+
|
97 |
+
# It is necessary to assign all attributes *before* __init__,
|
98 |
+
# as class is wrapped by an inner class.
|
99 |
+
self.max_steps = max_steps
|
100 |
+
if warmup_steps is not None:
|
101 |
+
self.warmup_steps = warmup_steps
|
102 |
+
elif warmup_ratio is not None:
|
103 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
104 |
+
else:
|
105 |
+
self.warmup_steps = 0
|
106 |
+
|
107 |
+
self.min_lr = min_lr
|
108 |
+
super().__init__(optimizer, last_epoch)
|
109 |
+
|
110 |
+
def get_lr(self):
|
111 |
+
if not self._get_lr_called_within_step:
|
112 |
+
warnings.warn(
|
113 |
+
"To get the last learning rate computed "
|
114 |
+
"by the scheduler, please use `get_last_lr()`.",
|
115 |
+
UserWarning,
|
116 |
+
stacklevel=2)
|
117 |
+
|
118 |
+
step = self.last_epoch
|
119 |
+
|
120 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
121 |
+
return self._get_warmup_lr(step)
|
122 |
+
|
123 |
+
if step > self.max_steps:
|
124 |
+
return [self.min_lr for _ in self.base_lrs]
|
125 |
+
|
126 |
+
return self._get_lr(step)
|
127 |
+
|
128 |
+
def _get_warmup_lr(self, step):
|
129 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
130 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
131 |
+
|
132 |
+
def _get_lr(self, step):
|
133 |
+
"""Simple const lr policy"""
|
134 |
+
return self.base_lrs
|
135 |
+
|
136 |
+
|
137 |
+
class SquareRootConstantPolicy(_LRScheduler):
|
138 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
139 |
+
All arguments should be passed as kwargs for clarity,
|
140 |
+
Args:
|
141 |
+
warmup_steps: Number of training steps in warmup stage
|
142 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
143 |
+
max_steps: Total number of steps while training or `None` for
|
144 |
+
infinite training
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self,
|
148 |
+
optimizer,
|
149 |
+
*,
|
150 |
+
constant_steps=None,
|
151 |
+
constant_ratio=None,
|
152 |
+
max_steps=None,
|
153 |
+
min_lr=0.0,
|
154 |
+
last_epoch=-1):
|
155 |
+
assert not (constant_steps is not None
|
156 |
+
and constant_ratio is not None), \
|
157 |
+
"Either use particular number of step or ratio"
|
158 |
+
assert constant_ratio is None or max_steps is not None, \
|
159 |
+
"If there is a ratio, there should be a total steps"
|
160 |
+
|
161 |
+
# It is necessary to assign all attributes *before* __init__,
|
162 |
+
# as class is wrapped by an inner class.
|
163 |
+
self.max_steps = max_steps
|
164 |
+
if constant_steps is not None:
|
165 |
+
self.constant_steps = constant_steps
|
166 |
+
elif constant_ratio is not None:
|
167 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
168 |
+
else:
|
169 |
+
self.constant_steps = 0
|
170 |
+
|
171 |
+
self.constant_lr = 1 / (constant_steps**0.5)
|
172 |
+
self.min_lr = min_lr
|
173 |
+
super().__init__(optimizer, last_epoch)
|
174 |
+
|
175 |
+
def get_lr(self):
|
176 |
+
if not self._get_lr_called_within_step:
|
177 |
+
warnings.warn(
|
178 |
+
"To get the last learning rate computed "
|
179 |
+
"by the scheduler, please use `get_last_lr()`.",
|
180 |
+
UserWarning,
|
181 |
+
stacklevel=2)
|
182 |
+
|
183 |
+
step = self.last_epoch
|
184 |
+
|
185 |
+
if step <= self.constant_steps:
|
186 |
+
return [self.constant_lr for _ in self.base_lrs]
|
187 |
+
|
188 |
+
if step > self.max_steps:
|
189 |
+
return [self.min_lr for _ in self.base_lrs]
|
190 |
+
|
191 |
+
return self._get_lr(step)
|
192 |
+
|
193 |
+
def _get_lr(self, step):
|
194 |
+
"""Simple const lr policy"""
|
195 |
+
return self.base_lrs
|
196 |
+
|
197 |
+
|
198 |
+
class WarmupHoldPolicy(WarmupPolicy):
|
199 |
+
"""Variant of WarmupPolicy which maintains high
|
200 |
+
learning rate for a defined number of steps.
|
201 |
+
All arguments should be passed as kwargs for clarity,
|
202 |
+
Args:
|
203 |
+
warmup_steps: Number of training steps in warmup stage
|
204 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
205 |
+
hold_steps: Number of training steps to
|
206 |
+
hold the learning rate after warm up
|
207 |
+
hold_ratio: Ratio of hold steps to total steps
|
208 |
+
max_steps: Total number of steps while training or `None` for
|
209 |
+
infinite training
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
optimizer,
|
215 |
+
*,
|
216 |
+
warmup_steps=None,
|
217 |
+
warmup_ratio=None,
|
218 |
+
hold_steps=None,
|
219 |
+
hold_ratio=None,
|
220 |
+
max_steps=None,
|
221 |
+
min_lr=0.0,
|
222 |
+
last_epoch=-1,
|
223 |
+
):
|
224 |
+
assert not (hold_steps is not None and hold_ratio is not None), \
|
225 |
+
"Either use particular number of step or ratio"
|
226 |
+
assert hold_ratio is None or max_steps is not None, \
|
227 |
+
"If there is a ratio, there should be a total steps"
|
228 |
+
|
229 |
+
self.min_lr = min_lr
|
230 |
+
self._last_warmup_lr = 0.0
|
231 |
+
|
232 |
+
# Necessary to duplicate as class attributes are hidden in inner class
|
233 |
+
self.max_steps = max_steps
|
234 |
+
if warmup_steps is not None:
|
235 |
+
self.warmup_steps = warmup_steps
|
236 |
+
elif warmup_ratio is not None:
|
237 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
238 |
+
else:
|
239 |
+
self.warmup_steps = 0
|
240 |
+
|
241 |
+
if hold_steps is not None:
|
242 |
+
self.hold_steps = hold_steps + self.warmup_steps
|
243 |
+
elif hold_ratio is not None:
|
244 |
+
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
245 |
+
else:
|
246 |
+
self.hold_steps = 0
|
247 |
+
|
248 |
+
super().__init__(
|
249 |
+
optimizer,
|
250 |
+
warmup_steps=warmup_steps,
|
251 |
+
warmup_ratio=warmup_ratio,
|
252 |
+
max_steps=max_steps,
|
253 |
+
last_epoch=last_epoch,
|
254 |
+
min_lr=min_lr,
|
255 |
+
)
|
256 |
+
|
257 |
+
def get_lr(self):
|
258 |
+
if not self._get_lr_called_within_step:
|
259 |
+
warnings.warn(
|
260 |
+
"To get the last learning rate computed by the scheduler,"
|
261 |
+
" "
|
262 |
+
"please use `get_last_lr()`.",
|
263 |
+
UserWarning,
|
264 |
+
stacklevel=2)
|
265 |
+
|
266 |
+
step = self.last_epoch
|
267 |
+
|
268 |
+
# Warmup phase
|
269 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
270 |
+
return self._get_warmup_lr(step)
|
271 |
+
|
272 |
+
# Hold phase
|
273 |
+
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
274 |
+
return self.base_lrs
|
275 |
+
|
276 |
+
if step > self.max_steps:
|
277 |
+
return [self.min_lr for _ in self.base_lrs]
|
278 |
+
|
279 |
+
return self._get_lr(step)
|
280 |
+
|
281 |
+
|
282 |
+
class WarmupAnnealHoldPolicy(_LRScheduler):
|
283 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
284 |
+
All arguments should be passed as kwargs for clarity,
|
285 |
+
Args:
|
286 |
+
warmup_steps: Number of training steps in warmup stage
|
287 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
288 |
+
max_steps: Total number of steps while training or `None` for
|
289 |
+
infinite training
|
290 |
+
min_lr: Minimum lr to hold the learning rate after decay at.
|
291 |
+
constant_steps: Number of steps to keep lr constant at.
|
292 |
+
constant_ratio: Ratio of steps to keep lr constant.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
optimizer,
|
298 |
+
*,
|
299 |
+
warmup_steps=None,
|
300 |
+
warmup_ratio=None,
|
301 |
+
constant_steps=None,
|
302 |
+
constant_ratio=None,
|
303 |
+
max_steps=None,
|
304 |
+
min_lr=0.0,
|
305 |
+
last_epoch=-1,
|
306 |
+
):
|
307 |
+
assert not (warmup_steps is not None
|
308 |
+
and warmup_ratio is not None), \
|
309 |
+
"Either use particular number of step or ratio"
|
310 |
+
assert not (constant_steps is not None
|
311 |
+
and constant_ratio is not None), \
|
312 |
+
"Either use constant_steps or constant_ratio"
|
313 |
+
assert warmup_ratio is None or max_steps is not None, \
|
314 |
+
"If there is a ratio, there should be a total steps"
|
315 |
+
|
316 |
+
# It is necessary to assign all attributes *before* __init__,
|
317 |
+
# as class is wrapped by an inner class.
|
318 |
+
self.max_steps = max_steps
|
319 |
+
|
320 |
+
if warmup_steps is not None:
|
321 |
+
self.warmup_steps = warmup_steps
|
322 |
+
elif warmup_ratio is not None:
|
323 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
324 |
+
else:
|
325 |
+
self.warmup_steps = 0
|
326 |
+
|
327 |
+
if constant_steps is not None:
|
328 |
+
self.constant_steps = constant_steps
|
329 |
+
elif constant_ratio is not None:
|
330 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
331 |
+
else:
|
332 |
+
self.constant_steps = 0
|
333 |
+
|
334 |
+
self.decay_steps = max_steps - (self.constant_steps +
|
335 |
+
self.warmup_steps)
|
336 |
+
|
337 |
+
self.min_lr = min_lr
|
338 |
+
super().__init__(optimizer, last_epoch)
|
339 |
+
|
340 |
+
def get_lr(self):
|
341 |
+
if not self._get_lr_called_within_step:
|
342 |
+
warnings.warn(
|
343 |
+
"To get the last learning rate computed "
|
344 |
+
"by the scheduler, please use `get_last_lr()`.",
|
345 |
+
UserWarning,
|
346 |
+
stacklevel=2)
|
347 |
+
|
348 |
+
step = self.last_epoch
|
349 |
+
|
350 |
+
# Warmup steps
|
351 |
+
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
352 |
+
return self._get_warmup_lr(step)
|
353 |
+
|
354 |
+
# Constant steps after warmup and decay
|
355 |
+
if self.constant_steps > 0 and (
|
356 |
+
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
357 |
+
return self._get_constant_lr(step)
|
358 |
+
|
359 |
+
# Min lr after max steps of updates
|
360 |
+
if step > self.max_steps:
|
361 |
+
return [self.min_lr for _ in self.base_lrs]
|
362 |
+
|
363 |
+
return self._get_lr(step)
|
364 |
+
|
365 |
+
def _get_warmup_lr(self, step):
|
366 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
367 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
368 |
+
|
369 |
+
def _get_constant_lr(self, step):
|
370 |
+
return [self.min_lr for _ in self.base_lrs]
|
371 |
+
|
372 |
+
def _get_lr(self, step):
|
373 |
+
"""Simple const lr policy"""
|
374 |
+
return self.base_lrs
|
375 |
+
|
376 |
+
|
377 |
+
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
378 |
+
mult = ((max_steps - step) / max_steps)**0.5
|
379 |
+
out_lr = initial_lr * mult
|
380 |
+
out_lr = max(out_lr, min_lr)
|
381 |
+
return out_lr
|
382 |
+
|
383 |
+
|
384 |
+
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
385 |
+
mult = ((max_steps - step) / max_steps)**2
|
386 |
+
out_lr = initial_lr * mult
|
387 |
+
out_lr = max(out_lr, min_lr)
|
388 |
+
return out_lr
|
389 |
+
|
390 |
+
|
391 |
+
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
392 |
+
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
393 |
+
out_lr = (initial_lr - min_lr) * mult + min_lr
|
394 |
+
return out_lr
|
395 |
+
|
396 |
+
|
397 |
+
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
398 |
+
decay_steps, min_lr):
|
399 |
+
assert max_lr > min_lr
|
400 |
+
# Use linear warmup for the initial part.
|
401 |
+
if warmup_steps > 0 and step <= warmup_steps:
|
402 |
+
return max_lr * float(step) / float(warmup_steps)
|
403 |
+
|
404 |
+
# For any steps larger than `decay_steps`, use `min_lr`.
|
405 |
+
if step > warmup_steps + decay_steps:
|
406 |
+
return min_lr
|
407 |
+
|
408 |
+
# If we are done with the warmup period, use the decay style.
|
409 |
+
num_steps_ = step - warmup_steps
|
410 |
+
decay_steps_ = decay_steps
|
411 |
+
decay_ratio = float(num_steps_) / float(decay_steps_)
|
412 |
+
assert decay_ratio >= 0.0
|
413 |
+
assert decay_ratio <= 1.0
|
414 |
+
delta_lr = max_lr - min_lr
|
415 |
+
|
416 |
+
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
417 |
+
|
418 |
+
return min_lr + coeff * delta_lr
|
419 |
+
|
420 |
+
|
421 |
+
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
422 |
+
if cycle:
|
423 |
+
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
424 |
+
decay_steps *= multiplier
|
425 |
+
else:
|
426 |
+
step = min(step, decay_steps)
|
427 |
+
p = step / decay_steps
|
428 |
+
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
429 |
+
lr += min_lr
|
430 |
+
return lr
|
431 |
+
|
432 |
+
|
433 |
+
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
434 |
+
decay_rate, min_lr):
|
435 |
+
# hold_steps = total number of steps
|
436 |
+
# to hold the LR, not the warmup + hold steps.
|
437 |
+
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
438 |
+
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
439 |
+
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
440 |
+
lr = max(lr, min_lr)
|
441 |
+
return lr
|
442 |
+
|
443 |
+
|
444 |
+
class SquareAnnealing(WarmupPolicy):
|
445 |
+
|
446 |
+
def __init__(self,
|
447 |
+
optimizer,
|
448 |
+
*,
|
449 |
+
max_steps,
|
450 |
+
min_lr=1e-5,
|
451 |
+
last_epoch=-1,
|
452 |
+
**kwargs):
|
453 |
+
super().__init__(optimizer=optimizer,
|
454 |
+
max_steps=max_steps,
|
455 |
+
last_epoch=last_epoch,
|
456 |
+
min_lr=min_lr,
|
457 |
+
**kwargs)
|
458 |
+
|
459 |
+
def _get_lr(self, step):
|
460 |
+
new_lrs = [
|
461 |
+
_square_annealing(
|
462 |
+
initial_lr=initial_lr,
|
463 |
+
step=step - self.warmup_steps,
|
464 |
+
max_steps=self.max_steps - self.warmup_steps,
|
465 |
+
min_lr=self.min_lr,
|
466 |
+
) for initial_lr in self.base_lrs
|
467 |
+
]
|
468 |
+
return new_lrs
|
469 |
+
|
470 |
+
|
471 |
+
class SquareRootAnnealing(WarmupPolicy):
|
472 |
+
|
473 |
+
def __init__(self,
|
474 |
+
optimizer,
|
475 |
+
*,
|
476 |
+
max_steps,
|
477 |
+
min_lr=0,
|
478 |
+
last_epoch=-1,
|
479 |
+
**kwargs):
|
480 |
+
super().__init__(optimizer=optimizer,
|
481 |
+
max_steps=max_steps,
|
482 |
+
last_epoch=last_epoch,
|
483 |
+
min_lr=min_lr,
|
484 |
+
**kwargs)
|
485 |
+
|
486 |
+
def _get_lr(self, step):
|
487 |
+
new_lrs = [
|
488 |
+
_squareroot_annealing(initial_lr=initial_lr,
|
489 |
+
step=step,
|
490 |
+
max_steps=self.max_steps,
|
491 |
+
min_lr=self.min_lr)
|
492 |
+
for initial_lr in self.base_lrs
|
493 |
+
]
|
494 |
+
return new_lrs
|
495 |
+
|
496 |
+
|
497 |
+
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
498 |
+
|
499 |
+
def __init__(self,
|
500 |
+
optimizer,
|
501 |
+
*,
|
502 |
+
max_steps,
|
503 |
+
min_lr=0,
|
504 |
+
last_epoch=-1,
|
505 |
+
**kwargs):
|
506 |
+
super().__init__(optimizer=optimizer,
|
507 |
+
max_steps=max_steps,
|
508 |
+
last_epoch=last_epoch,
|
509 |
+
min_lr=min_lr,
|
510 |
+
**kwargs)
|
511 |
+
|
512 |
+
def _get_lr(self, step):
|
513 |
+
for initial_lr in self.base_lrs:
|
514 |
+
if initial_lr < self.min_lr:
|
515 |
+
raise ValueError(
|
516 |
+
f"{self} received an initial learning rate "
|
517 |
+
f"that was lower than the minimum learning rate.")
|
518 |
+
|
519 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
520 |
+
new_lrs = [
|
521 |
+
_cosine_annealing(
|
522 |
+
initial_lr=initial_lr,
|
523 |
+
step=step - self.warmup_steps,
|
524 |
+
max_steps=self.max_steps - self.warmup_steps,
|
525 |
+
min_lr=self.min_lr,
|
526 |
+
) for initial_lr in self.base_lrs
|
527 |
+
]
|
528 |
+
else:
|
529 |
+
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
530 |
+
return new_lrs
|
531 |
+
|
532 |
+
def _get_warmup_lr(self, step):
|
533 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
534 |
+
return super()._get_warmup_lr(step)
|
535 |
+
else:
|
536 |
+
# Use linear warmup for the initial part.
|
537 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
538 |
+
|
539 |
+
def _get_constant_lr(self, step):
|
540 |
+
# Only called when `constant_steps` > 0.
|
541 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
542 |
+
|
543 |
+
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
544 |
+
# Cosine Schedule for Megatron LM,
|
545 |
+
# slightly different warmup schedule + constant LR at the end.
|
546 |
+
new_lrs = [
|
547 |
+
_linear_warmup_with_cosine_annealing(
|
548 |
+
max_lr=self.base_lrs[0],
|
549 |
+
warmup_steps=self.warmup_steps,
|
550 |
+
step=step,
|
551 |
+
decay_steps=self.decay_steps,
|
552 |
+
min_lr=self.min_lr,
|
553 |
+
) for _ in self.base_lrs
|
554 |
+
]
|
555 |
+
return new_lrs
|
556 |
+
|
557 |
+
|
558 |
+
class NoamAnnealing(_LRScheduler):
|
559 |
+
|
560 |
+
def __init__(self,
|
561 |
+
optimizer,
|
562 |
+
*,
|
563 |
+
d_model,
|
564 |
+
warmup_steps=None,
|
565 |
+
warmup_ratio=None,
|
566 |
+
max_steps=None,
|
567 |
+
min_lr=0.0,
|
568 |
+
last_epoch=-1):
|
569 |
+
self._normalize = d_model**(-0.5)
|
570 |
+
assert not (warmup_steps is not None
|
571 |
+
and warmup_ratio is not None), \
|
572 |
+
"Either use particular number of step or ratio"
|
573 |
+
assert warmup_ratio is None or max_steps is not None, \
|
574 |
+
"If there is a ratio, there should be a total steps"
|
575 |
+
|
576 |
+
# It is necessary to assign all attributes *before* __init__,
|
577 |
+
# as class is wrapped by an inner class.
|
578 |
+
self.max_steps = max_steps
|
579 |
+
if warmup_steps is not None:
|
580 |
+
self.warmup_steps = warmup_steps
|
581 |
+
elif warmup_ratio is not None:
|
582 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
583 |
+
else:
|
584 |
+
self.warmup_steps = 0
|
585 |
+
|
586 |
+
self.min_lr = min_lr
|
587 |
+
super().__init__(optimizer, last_epoch)
|
588 |
+
|
589 |
+
def get_lr(self):
|
590 |
+
if not self._get_lr_called_within_step:
|
591 |
+
warnings.warn(
|
592 |
+
"To get the last learning rate computed "
|
593 |
+
"by the scheduler, please use `get_last_lr()`.",
|
594 |
+
UserWarning,
|
595 |
+
stacklevel=2)
|
596 |
+
|
597 |
+
step = max(1, self.last_epoch)
|
598 |
+
|
599 |
+
for initial_lr in self.base_lrs:
|
600 |
+
if initial_lr < self.min_lr:
|
601 |
+
raise ValueError(
|
602 |
+
f"{self} received an initial learning rate "
|
603 |
+
f"that was lower than the minimum learning rate.")
|
604 |
+
|
605 |
+
new_lrs = [
|
606 |
+
self._noam_annealing(initial_lr=initial_lr, step=step)
|
607 |
+
for initial_lr in self.base_lrs
|
608 |
+
]
|
609 |
+
return new_lrs
|
610 |
+
|
611 |
+
def _noam_annealing(self, initial_lr, step):
|
612 |
+
if self.warmup_steps > 0:
|
613 |
+
mult = self._normalize * min(step**(-0.5),
|
614 |
+
step * (self.warmup_steps**(-1.5)))
|
615 |
+
else:
|
616 |
+
mult = self._normalize * step**(-0.5)
|
617 |
+
|
618 |
+
out_lr = initial_lr * mult
|
619 |
+
if step > self.warmup_steps:
|
620 |
+
out_lr = max(out_lr, self.min_lr)
|
621 |
+
return out_lr
|
622 |
+
|
623 |
+
|
624 |
+
class NoamHoldAnnealing(WarmupHoldPolicy):
|
625 |
+
|
626 |
+
def __init__(self,
|
627 |
+
optimizer,
|
628 |
+
*,
|
629 |
+
max_steps,
|
630 |
+
decay_rate=0.5,
|
631 |
+
min_lr=0.0,
|
632 |
+
last_epoch=-1,
|
633 |
+
**kwargs):
|
634 |
+
"""
|
635 |
+
From Nemo:
|
636 |
+
Implementation of the Noam Hold Annealing policy
|
637 |
+
from the SqueezeFormer paper.
|
638 |
+
|
639 |
+
Unlike NoamAnnealing, the peak learning rate
|
640 |
+
can be explicitly set for this scheduler.
|
641 |
+
The schedule first performs linear warmup,
|
642 |
+
then holds the peak LR, then decays with some schedule for
|
643 |
+
the remainder of the steps.
|
644 |
+
Therefore the min-lr is still dependent
|
645 |
+
on the hyper parameters selected.
|
646 |
+
|
647 |
+
It's schedule is determined by three factors-
|
648 |
+
|
649 |
+
Warmup Steps: Initial stage, where linear warmup
|
650 |
+
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
651 |
+
the peak LR is explicitly stated here instead of a scaling factor.
|
652 |
+
|
653 |
+
Hold Steps: Intermediate stage, where the peak LR
|
654 |
+
is maintained for some number of steps. In this region,
|
655 |
+
the high peak LR allows the model to converge faster
|
656 |
+
if training is stable. However the high LR
|
657 |
+
may also cause instability during training.
|
658 |
+
Should usually be a significant fraction of training
|
659 |
+
steps (around 30-40% of the entire training steps).
|
660 |
+
|
661 |
+
Decay Steps: Final stage, where the LR rapidly decays
|
662 |
+
with some scaling rate (set by decay rate).
|
663 |
+
To attain Noam decay, use 0.5,
|
664 |
+
for Squeezeformer recommended decay, use 1.0.
|
665 |
+
The fast decay after prolonged high LR during
|
666 |
+
hold phase allows for rapid convergence.
|
667 |
+
|
668 |
+
References:
|
669 |
+
- [Squeezeformer:
|
670 |
+
An Efficient Transformer for Automatic Speech Recognition]
|
671 |
+
(https://arxiv.org/abs/2206.00888)
|
672 |
+
|
673 |
+
Args:
|
674 |
+
optimizer: Pytorch compatible Optimizer object.
|
675 |
+
warmup_steps: Number of training steps in warmup stage
|
676 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
677 |
+
hold_steps: Number of training steps to
|
678 |
+
hold the learning rate after warm up
|
679 |
+
hold_ratio: Ratio of hold steps to total steps
|
680 |
+
max_steps: Total number of steps while training or `None` for
|
681 |
+
infinite training
|
682 |
+
decay_rate: Float value describing the polynomial decay
|
683 |
+
after the hold period. Default value
|
684 |
+
of 0.5 corresponds to Noam decay.
|
685 |
+
min_lr: Minimum learning rate.
|
686 |
+
"""
|
687 |
+
self.decay_rate = decay_rate
|
688 |
+
super().__init__(optimizer=optimizer,
|
689 |
+
max_steps=max_steps,
|
690 |
+
last_epoch=last_epoch,
|
691 |
+
min_lr=min_lr,
|
692 |
+
**kwargs)
|
693 |
+
|
694 |
+
def _get_lr(self, step):
|
695 |
+
if self.warmup_steps is None or self.warmup_steps == 0:
|
696 |
+
raise ValueError(
|
697 |
+
"Noam scheduler cannot be used without warmup steps")
|
698 |
+
|
699 |
+
if self.hold_steps > 0:
|
700 |
+
hold_steps = self.hold_steps - self.warmup_steps
|
701 |
+
else:
|
702 |
+
hold_steps = 0
|
703 |
+
|
704 |
+
new_lrs = [
|
705 |
+
_noam_hold_annealing(
|
706 |
+
initial_lr,
|
707 |
+
step=step,
|
708 |
+
warmup_steps=self.warmup_steps,
|
709 |
+
hold_steps=hold_steps,
|
710 |
+
decay_rate=self.decay_rate,
|
711 |
+
min_lr=self.min_lr,
|
712 |
+
) for initial_lr in self.base_lrs
|
713 |
+
]
|
714 |
+
return new_lrs
|
715 |
+
|
716 |
+
def set_step(self, step: int):
|
717 |
+
self.last_epoch = step
|
718 |
+
|
719 |
+
|
720 |
+
class ConstantLR(_LRScheduler):
|
721 |
+
"""The ConstantLR scheduler
|
722 |
+
|
723 |
+
This scheduler keeps a constant lr
|
724 |
+
|
725 |
+
"""
|
726 |
+
|
727 |
+
def __init__(
|
728 |
+
self,
|
729 |
+
optimizer: torch.optim.Optimizer,
|
730 |
+
):
|
731 |
+
# __init__() must be invoked before setting field
|
732 |
+
# because step() is also invoked in __init__()
|
733 |
+
super().__init__(optimizer)
|
734 |
+
|
735 |
+
def get_lr(self):
|
736 |
+
return self.base_lrs
|
737 |
+
|
738 |
+
def set_step(self, step: int):
|
739 |
+
self.last_epoch = step
|