Upload model_loader.py
Browse files- models/model_loader.py +42 -0
models/model_loader.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# models/model_loader.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers import ElectraModel, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
|
| 8 |
+
class KOTEtagger(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
KcELECTRA + Linear Head, multi-label emotion classifier (44 labels).
|
| 11 |
+
- 가중치 파일: kote_pytorch_lightning.bin (strict=False 로딩)
|
| 12 |
+
"""
|
| 13 |
+
def __init__(self, model_name="beomi/KcELECTRA-base", revision='v2021', num_labels=44):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.electra = ElectraModel.from_pretrained(model_name, revision=revision)
|
| 16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
| 17 |
+
self.classifier = nn.Linear(self.electra.config.hidden_size, num_labels)
|
| 18 |
+
|
| 19 |
+
def forward(self, text: str):
|
| 20 |
+
encoding = self.tokenizer.encode_plus(
|
| 21 |
+
text,
|
| 22 |
+
add_special_tokens=True,
|
| 23 |
+
max_length=128,
|
| 24 |
+
padding="max_length",
|
| 25 |
+
truncation=True,
|
| 26 |
+
return_attention_mask=True,
|
| 27 |
+
return_tensors='pt',
|
| 28 |
+
)
|
| 29 |
+
input_ids = encoding["input_ids"].to(DEVICE)
|
| 30 |
+
attention_mask = encoding["attention_mask"].to(DEVICE)
|
| 31 |
+
outputs = self.electra(input_ids, attention_mask=attention_mask)
|
| 32 |
+
cls = outputs.last_hidden_state[:, 0, :]
|
| 33 |
+
logits = self.classifier(cls)
|
| 34 |
+
return torch.sigmoid(logits)
|
| 35 |
+
|
| 36 |
+
def load_kote_model(weight_path="kote_pytorch_lightning.bin"):
|
| 37 |
+
model = KOTEtagger()
|
| 38 |
+
model.to(DEVICE)
|
| 39 |
+
state = torch.load(weight_path, map_location=DEVICE)
|
| 40 |
+
model.load_state_dict(state, strict=False)
|
| 41 |
+
model.eval()
|
| 42 |
+
return model
|