Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import open_clip
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import time
|
8 |
+
import json
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
@st.cache_resource
|
13 |
+
def load_model():
|
14 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
15 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model.to(device)
|
18 |
+
return model, preprocess_val, tokenizer, device
|
19 |
+
|
20 |
+
model, preprocess_val, tokenizer, device = load_model()
|
21 |
+
|
22 |
+
# Load and process data
|
23 |
+
@st.cache_data
|
24 |
+
def load_data():
|
25 |
+
with open('./musinsa-final.json', 'r', encoding='utf-8') as f:
|
26 |
+
return json.load(f)
|
27 |
+
|
28 |
+
data = load_data()
|
29 |
+
|
30 |
+
# Helper functions
|
31 |
+
def load_image_from_url(url, max_retries=3):
|
32 |
+
for attempt in range(max_retries):
|
33 |
+
try:
|
34 |
+
response = requests.get(url, timeout=10)
|
35 |
+
response.raise_for_status()
|
36 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
37 |
+
return img
|
38 |
+
except (requests.RequestException, Image.UnidentifiedImageError) as e:
|
39 |
+
#st.warning(f"Attempt {attempt + 1} failed: {str(e)}")
|
40 |
+
if attempt < max_retries - 1:
|
41 |
+
time.sleep(1)
|
42 |
+
else:
|
43 |
+
#st.error(f"Failed to load image from {url} after {max_retries} attempts")
|
44 |
+
return None
|
45 |
+
|
46 |
+
def get_image_embedding_from_url(image_url):
|
47 |
+
image = load_image_from_url(image_url)
|
48 |
+
if image is None:
|
49 |
+
return None
|
50 |
+
|
51 |
+
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
image_features = model.encode_image(image_tensor)
|
55 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
56 |
+
|
57 |
+
return image_features.cpu().numpy()
|
58 |
+
|
59 |
+
@st.cache_data
|
60 |
+
def process_database():
|
61 |
+
database_embeddings = []
|
62 |
+
database_info = []
|
63 |
+
|
64 |
+
for item in data:
|
65 |
+
image_url = item['์ด๋ฏธ์ง ๋งํฌ'][0]
|
66 |
+
embedding = get_image_embedding_from_url(image_url)
|
67 |
+
|
68 |
+
if embedding is not None:
|
69 |
+
database_embeddings.append(embedding)
|
70 |
+
database_info.append({
|
71 |
+
'id': item['\ufeff์ํ ID'],
|
72 |
+
'category': item['์นดํ
๊ณ ๋ฆฌ'],
|
73 |
+
'brand': item['๋ธ๋๋๋ช
'],
|
74 |
+
'name': item['์ ํ๋ช
'],
|
75 |
+
'price': item['์ ๊ฐ'],
|
76 |
+
'discount': item['ํ ์ธ์จ'],
|
77 |
+
'image_url': image_url
|
78 |
+
})
|
79 |
+
else:
|
80 |
+
st.warning(f"Skipping item {item['๏ปฟ์ํ ID']} due to image loading failure")
|
81 |
+
|
82 |
+
if database_embeddings:
|
83 |
+
return np.vstack(database_embeddings), database_info
|
84 |
+
else:
|
85 |
+
st.error("No valid embeddings were generated.")
|
86 |
+
return None, None
|
87 |
+
|
88 |
+
database_embeddings, database_info = process_database()
|
89 |
+
|
90 |
+
def get_text_embedding(text):
|
91 |
+
text_tokens = tokenizer([text]).to(device)
|
92 |
+
|
93 |
+
with torch.no_grad():
|
94 |
+
text_features = model.encode_text(text_tokens)
|
95 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
96 |
+
|
97 |
+
return text_features.cpu().numpy()
|
98 |
+
|
99 |
+
def find_similar_images(query_embedding, top_k=5):
|
100 |
+
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
|
101 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
102 |
+
|
103 |
+
results = []
|
104 |
+
for idx in top_indices:
|
105 |
+
results.append({
|
106 |
+
'info': database_info[idx],
|
107 |
+
'similarity': similarities[idx]
|
108 |
+
})
|
109 |
+
|
110 |
+
return results
|
111 |
+
|
112 |
+
# Streamlit app
|
113 |
+
st.title("Fashion Search App")
|
114 |
+
|
115 |
+
search_type = st.radio("Search by:", ("Image URL", "Text"))
|
116 |
+
|
117 |
+
if search_type == "Image URL":
|
118 |
+
query_image_url = st.text_input("Enter image URL:")
|
119 |
+
if st.button("Search by Image"):
|
120 |
+
if query_image_url:
|
121 |
+
query_embedding = get_image_embedding_from_url(query_image_url)
|
122 |
+
if query_embedding is not None:
|
123 |
+
similar_images = find_similar_images(query_embedding)
|
124 |
+
st.image(query_image_url, caption="Query Image", use_column_width=True)
|
125 |
+
st.subheader("Similar Items:")
|
126 |
+
for img in similar_images:
|
127 |
+
col1, col2 = st.columns(2)
|
128 |
+
with col1:
|
129 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
130 |
+
with col2:
|
131 |
+
st.write(f"Name: {img['info']['name']}")
|
132 |
+
st.write(f"Brand: {img['info']['brand']}")
|
133 |
+
st.write(f"Category: {img['info']['category']}")
|
134 |
+
st.write(f"Price: {img['info']['price']}")
|
135 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
136 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
137 |
+
else:
|
138 |
+
st.error("Failed to process the image. Please try another URL.")
|
139 |
+
else:
|
140 |
+
st.warning("Please enter an image URL.")
|
141 |
+
|
142 |
+
else: # Text search
|
143 |
+
query_text = st.text_input("Enter search text:")
|
144 |
+
if st.button("Search by Text"):
|
145 |
+
if query_text:
|
146 |
+
text_embedding = get_text_embedding(query_text)
|
147 |
+
similar_images = find_similar_images(text_embedding)
|
148 |
+
st.subheader("Similar Items:")
|
149 |
+
for img in similar_images:
|
150 |
+
col1, col2 = st.columns(2)
|
151 |
+
with col1:
|
152 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
153 |
+
with col2:
|
154 |
+
st.write(f"Name: {img['info']['name']}")
|
155 |
+
st.write(f"Brand: {img['info']['brand']}")
|
156 |
+
st.write(f"Category: {img['info']['category']}")
|
157 |
+
st.write(f"Price: {img['info']['price']}")
|
158 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
159 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
160 |
+
else:
|
161 |
+
st.warning("Please enter a search text.")
|