|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from audiocraft.modules.rope import RotaryEmbedding |
|
from audiocraft.modules.transformer import StreamingTransformer, set_efficient_attention_backend |
|
|
|
|
|
def test_rope(): |
|
set_efficient_attention_backend('torch') |
|
B, T, H, C = 8, 75, 16, 128 |
|
|
|
rope = RotaryEmbedding(dim=C) |
|
xq = torch.rand((B, T, H, C)) |
|
xk = torch.rand((B, T, H, C)) |
|
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7) |
|
|
|
assert list(xq_out.shape) == [B, T, H, C] |
|
assert list(xk_out.shape) == [B, T, H, C] |
|
|
|
|
|
def test_rope_io_dtypes(): |
|
set_efficient_attention_backend('torch') |
|
B, T, H, C = 8, 75, 16, 128 |
|
|
|
rope_32 = RotaryEmbedding(dim=C, dtype=torch.float32) |
|
rope_64 = RotaryEmbedding(dim=C, dtype=torch.float64) |
|
|
|
|
|
xq_16 = torch.rand((B, T, H, C)).to(torch.bfloat16) |
|
xk_16 = torch.rand((B, T, H, C)).to(torch.bfloat16) |
|
xq_out, xk_out = rope_32.rotate_qk(xq_16, xk_16) |
|
assert xq_out.dtype == torch.bfloat16 |
|
xq_out, xk_out = rope_64.rotate_qk(xq_16, xk_16) |
|
assert xq_out.dtype == torch.bfloat16 |
|
|
|
|
|
xq_32 = torch.rand((B, T, H, C)).to(torch.float32) |
|
xk_32 = torch.rand((B, T, H, C)).to(torch.float32) |
|
xq_out, xk_out = rope_32.rotate_qk(xq_32, xk_32) |
|
assert xq_out.dtype == torch.float32 |
|
xq_out, xk_out = rope_64.rotate_qk(xq_32, xk_32) |
|
assert xq_out.dtype == torch.float32 |
|
|
|
|
|
def test_transformer_with_rope(): |
|
set_efficient_attention_backend('torch') |
|
torch.manual_seed(1234) |
|
for pos in ['rope', 'sin_rope']: |
|
tr = StreamingTransformer( |
|
16, 4, 2, custom=True, dropout=0., layer_scale=0.1, |
|
positional_embedding=pos) |
|
tr.eval() |
|
steps = 12 |
|
x = torch.randn(3, steps, 16) |
|
|
|
out = tr(x) |
|
assert list(out.shape) == list(x.shape) |
|
|
|
|
|
@torch.no_grad() |
|
def test_rope_streaming(): |
|
set_efficient_attention_backend('torch') |
|
torch.manual_seed(1234) |
|
tr = StreamingTransformer( |
|
16, 4, 2, causal=True, dropout=0., |
|
custom=True, positional_embedding='rope') |
|
tr.eval() |
|
steps = 12 |
|
x = torch.randn(3, steps, 16) |
|
|
|
ref = tr(x) |
|
|
|
with tr.streaming(): |
|
outs = [] |
|
frame_sizes = [1] * steps |
|
|
|
for frame_size in frame_sizes: |
|
frame = x[:, :frame_size] |
|
x = x[:, frame_size:] |
|
outs.append(tr(frame)) |
|
|
|
out = torch.cat(outs, dim=1) |
|
assert list(out.shape) == [3, steps, 16] |
|
delta = torch.norm(out - ref) / torch.norm(out) |
|
assert delta < 1e-6, delta |
|
|
|
|
|
@torch.no_grad() |
|
def test_rope_streaming_past_context(): |
|
set_efficient_attention_backend('torch') |
|
torch.manual_seed(1234) |
|
|
|
for context in [None, 10]: |
|
tr = StreamingTransformer( |
|
16, 4, 1 if context else 2, |
|
causal=True, past_context=context, custom=True, |
|
dropout=0., positional_embedding='rope') |
|
tr.eval() |
|
|
|
steps = 20 |
|
x = torch.randn(3, steps, 16) |
|
ref = tr(x) |
|
|
|
with tr.streaming(): |
|
outs = [] |
|
frame_sizes = [1] * steps |
|
|
|
for frame_size in frame_sizes: |
|
frame = x[:, :frame_size] |
|
x = x[:, frame_size:] |
|
outs.append(tr(frame)) |
|
|
|
out = torch.cat(outs, dim=1) |
|
assert list(out.shape) == [3, steps, 16] |
|
delta = torch.norm(out - ref) / torch.norm(out) |
|
assert delta < 1e-6, delta |
|
|
|
|
|
def test_rope_memory_efficient(): |
|
set_efficient_attention_backend('torch') |
|
torch.manual_seed(1234) |
|
tr = StreamingTransformer( |
|
16, 4, 2, custom=True, dropout=0., layer_scale=0.1, |
|
positional_embedding='rope') |
|
tr_mem_efficient = StreamingTransformer( |
|
16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1, |
|
positional_embedding='rope') |
|
tr_mem_efficient.load_state_dict(tr.state_dict()) |
|
tr.eval() |
|
steps = 12 |
|
x = torch.randn(3, steps, 16) |
|
|
|
with torch.no_grad(): |
|
y = tr(x) |
|
y2 = tr_mem_efficient(x) |
|
|
|
assert torch.allclose(y, y2, atol=1e-7), (y - y2).norm() |
|
|
|
|
|
def test_rope_with_xpos(): |
|
set_efficient_attention_backend('torch') |
|
B, T, H, C = 8, 75, 16, 128 |
|
|
|
rope = RotaryEmbedding(dim=C, xpos=True) |
|
xq = torch.rand((B, T, H, C)) |
|
xk = torch.rand((B, T, H, C)) |
|
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7) |
|
|
|
assert list(xq_out.shape) == [B, T, H, C] |
|
assert list(xk_out.shape) == [B, T, H, C] |
|
|
|
|
|
def test_positional_scale(): |
|
set_efficient_attention_backend('torch') |
|
B, T, H, C = 8, 75, 16, 128 |
|
|
|
rope = RotaryEmbedding(dim=C, xpos=True, scale=0.0) |
|
xq = torch.rand((B, T, H, C)) |
|
xk = torch.rand((B, T, H, C)) |
|
xq_out, xk_out = rope.rotate_qk(xq, xk, start=7) |
|
|
|
assert torch.allclose(xq, xq_out) |
|
assert torch.allclose(xk, xk_out) |
|
|