|
import gc |
|
import hashlib |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
|
|
import librosa |
|
import torch |
|
from diskcache import Cache |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.http import models |
|
from tqdm import tqdm |
|
from transformers import ClapModel, ClapProcessor |
|
|
|
from s3_utils import s3_auth, upload_file_to_bucket |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
|
|
CACHE_FOLDER = '/home/arthur/data/music/demo_audio_search/audio_embeddings_cache_individual/' |
|
KAGGLE_DB_PATH = '/home/arthur/data/kaggle/park-spring-2023-music-genre-recognition/train/train' |
|
AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID'] |
|
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY'] |
|
S3_BUCKET = "synthia-research" |
|
S3_FOLDER = "huggingface_spaces_demo" |
|
AWS_REGION = "eu-west-3" |
|
|
|
s3 = s3_auth(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION) |
|
|
|
|
|
|
|
def get_md5(fpath): |
|
with open(fpath, "rb") as f: |
|
file_hash = hashlib.md5() |
|
while chunk := f.read(8192): |
|
file_hash.update(chunk) |
|
return file_hash.hexdigest() |
|
|
|
|
|
def get_audio_embedding(model, audio_file, cache): |
|
|
|
file_key = f"{model.config._name_or_path}" + get_md5(audio_file) |
|
if file_key in cache: |
|
|
|
embedding = cache[file_key] |
|
else: |
|
|
|
y, sr = librosa.load(audio_file, sr=48000) |
|
inputs = processor(audios=y, sampling_rate=sr, return_tensors="pt") |
|
embedding = model.get_audio_features(**inputs)[0] |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
cache[file_key] = embedding |
|
return embedding |
|
|
|
|
|
|
|
|
|
|
|
print("[INFO] Loading the model...") |
|
model_name = "laion/larger_clap_general" |
|
model = ClapModel.from_pretrained(model_name) |
|
processor = ClapProcessor.from_pretrained(model_name) |
|
|
|
|
|
os.makedirs(CACHE_FOLDER, exist_ok=True) |
|
cache = Cache(CACHE_FOLDER) |
|
|
|
|
|
client = QdrantClient(os.environ['QDRANT_URL'], api_key=os.environ['QDRANT_KEY']) |
|
print("[INFO] Client created...") |
|
|
|
print("[INFO] Creating qdrant data collection...") |
|
if not client.collection_exists("demo_spaces_db"): |
|
client.create_collection( |
|
collection_name="demo_spaces_db", |
|
vectors_config=models.VectorParams( |
|
size=model.config.projection_dim, |
|
distance=models.Distance.COSINE |
|
), |
|
) |
|
|
|
|
|
audio_files = [p for p in glob(os.path.join(KAGGLE_DB_PATH, '*/*.wav'))] |
|
chunk_size, idx = 1, 0 |
|
total_chunks = int(len(audio_files) / chunk_size) |
|
|
|
|
|
print("Uploading on DB + S3") |
|
for i in tqdm(range(0, len(audio_files), chunk_size), |
|
desc="[INFO] Uploading data records to data collection..."): |
|
chunk = audio_files[i:i + chunk_size] |
|
records = [] |
|
for audio_file in chunk: |
|
embedding = get_audio_embedding(model, audio_file, cache) |
|
file_obj = open(audio_file, 'rb') |
|
s3key = f'{S3_FOLDER}/{Path(audio_file).name}' |
|
upload_file_to_bucket(s3, file_obj, S3_BUCKET, s3key) |
|
records.append( |
|
models.PointStruct( |
|
id=idx, vector=embedding, |
|
payload={ |
|
"audio_path": audio_file, |
|
"audio_s3url": f"https://{S3_BUCKET}.s3.amazonaws.com/{s3key}", |
|
"style": audio_file.split('/')[-1]} |
|
) |
|
) |
|
f"Uploaded s3 file : {idx}" |
|
idx += 1 |
|
client.upload_points( |
|
collection_name="demo_spaces_db", |
|
points=records |
|
) |
|
print("[INFO] Successfully uploaded data records to data collection!") |
|
|
|
|
|
|
|
cache.close() |