TranSVAE / dcgan_64.py
ldkong's picture
Update dcgan_64.py
3a316b0
raw
history blame
4.23 kB
import torch.nn as nn
import torch.nn.functional as F
class dcgan_conv(nn.Module):
def __init__(self, nin, nout):
super(dcgan_conv, self).__init__()
self.main = nn.Sequential(nn.Conv2d(nin, nout, 4, 2, 1), nn.BatchNorm2d(nout), nn.LeakyReLU(0.2, inplace=True))
def forward(self, input):
return self.main(input)
class dcgan_upconv(nn.Module):
def __init__(self, nin, nout):
super(dcgan_upconv, self).__init__()
self.main = nn.Sequential(nn.ConvTranspose2d(nin, nout, 4, 2, 1), nn.BatchNorm2d(nout), nn.LeakyReLU(0.2, inplace=True))
def forward(self, input):
return self.main(input)
class encoder(nn.Module):
def __init__(self, dim, nc=1):
super(encoder, self).__init__()
self.dim = dim
nf = 64
self.c1 = dcgan_conv(nc, nf)
self.c2 = dcgan_conv(nf, nf * 2)
self.c3 = dcgan_conv(nf * 2, nf * 4)
self.c4 = dcgan_conv(nf * 4, nf * 8)
self.c5 = nn.Sequential(nn.Conv2d(nf * 8, dim, 4, 1, 0), nn.BatchNorm2d(dim), nn.Tanh())
def forward(self, input):
h1 = self.c1(input)
h2 = self.c2(h1)
h3 = self.c3(h2)
h4 = self.c4(h3)
h5 = self.c5(h4)
return h5.view(-1, self.dim), [h1, h2, h3, h4]
class decoder_convT(nn.Module):
def __init__(self, dim, nc=1):
super(decoder_convT, self).__init__()
self.dim = dim
nf = 64
self.upc1 = nn.Sequential(
nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
nn.BatchNorm2d(nf * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.upc2 = dcgan_upconv(nf * 8, nf * 4)
self.upc3 = dcgan_upconv(nf * 4, nf * 2)
self.upc4 = dcgan_upconv(nf * 2, nf)
self.upc5 = nn.Sequential(
nn.ConvTranspose2d(nf, nc, 4, 2, 1),
nn.Sigmoid()
)
def forward(self, input):
d1 = self.upc1(input.view(-1, self.dim, 1, 1))
d2 = self.upc2(d1)
d3 = self.upc3(d2)
d4 = self.upc4(d3)
output = self.upc5(d4)
output = output.view(input.shape[0], input.shape[1], output.shape[1], output.shape[2], output.shape[3])
return output
class decoder_woSkip(nn.Module):
def __init__(self, dim, nc=1):
super(decoder_woSkip, self).__init__()
self.dim = dim
nf = 64
self.upc1 = nn.Sequential(
nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
nn.BatchNorm2d(nf * 8),
nn.LeakyReLU(0.2, inplace=True)
)
self.upc2 = dcgan_upconv(nf * 8, nf * 4)
self.upc3 = dcgan_upconv(nf * 4, nf * 2)
self.upc4 = dcgan_upconv(nf * 2, nf)
self.upc5 = nn.Sequential(
nn.ConvTranspose2d(nf, nc, 4, 2, 1),
nn.Sigmoid()
)
def forward(self, input):
d1 = self.upc1(input.view(-1, self.dim, 1, 1))
d2 = self.upc2(d1)
d3 = self.upc3(d2)
d4 = self.upc4(d3)
output = self.upc5(d4)
output = output.view(input.shape[0], input.shape[1], output.shape[1], output.shape[2], output.shape[3])
return output
class upconv(nn.Module):
def __init__(self, nc_in, nc_out):
super().__init__()
self.conv = nn.Conv2d(nc_in, nc_out, 3, 1, 1)
self.norm = nn.BatchNorm2d(nc_out)
def forward(self, input):
out = F.interpolate(input, scale_factor=2, mode='bilinear', align_corners=False)
return F.relu(self.norm(self.conv(out)))
class decoder_conv(nn.Module):
def __init__(self, dim, nc=1):
super(decoder_conv, self).__init__()
self.dim = dim
nf = 64
self.main = nn.Sequential(
nn.ConvTranspose2d(dim, nf * 8, 4, 1, 0),
nn.BatchNorm2d(nf * 8),
nn.ReLU(),
upconv(nf * 8, nf * 4),
upconv(nf * 4, nf * 2),
upconv(nf * 2, nf * 2),
upconv(nf * 2, nf),
nn.Conv2d(nf, nc, 1, 1, 0),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input.view(-1, self.dim, 1, 1))
output = output.view(input.shape[0], input.shape[1], output.shape[1], output.shape[2], output.shape[3])
return output