Xmaster6y's picture
fixed demo
208fad8
"""
Gradio interface for converting models.
"""
import os
import uuid
import re
import subprocess
import gradio as gr
from demo import constants, utils
from lczerolens import backends
def get_models_info(onnx=True, leela=True):
"""
Get the names of the models in the model directory.
"""
model_df = []
exp = r"(?P<n_filters>\d+)x(?P<n_blocks>\d+)"
if onnx:
for filename in os.listdir(constants.ONNX_MODEL_DIRECTORY):
if filename.endswith(".onnx"):
match = re.search(exp, filename)
if match is None:
n_filters = -1
n_blocks = -1
else:
n_filters = int(match.group("n_filters"))
n_blocks = int(match.group("n_blocks"))
model_df.append(
[
filename,
"ONNX",
n_blocks,
n_filters,
]
)
if leela:
for filename in os.listdir(constants.LEELA_MODEL_DIRECTORY):
if filename.endswith(".pb.gz"):
match = re.search(exp, filename)
if match is None:
n_filters = -1
n_blocks = -1
else:
n_filters = int(match.group("n_filters"))
n_blocks = int(match.group("n_blocks"))
model_df.append(
[
filename,
"LEELA",
n_blocks,
n_filters,
]
)
return model_df
def save_model(tmp_file_path):
"""
Save the model to the model directory.
"""
popen = subprocess.Popen(
["file", tmp_file_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
popen.wait()
if popen.returncode != 0:
raise RuntimeError
file_desc = popen.stdout.read().decode("utf-8").split(tmp_file_path)[1].strip()
rename_match = re.search(r"was\s\"(?P<name>.+)\"", file_desc)
type_match = re.search(r"\:\s(?P<type>[a-zA-Z]+)", file_desc)
if rename_match is None or type_match is None:
raise RuntimeError
model_name = rename_match.group("name")
model_type = type_match.group("type")
if model_type != "gzip":
raise RuntimeError
os.rename(
tmp_file_path,
f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz",
)
try:
backends.describenet(
f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz",
)
except RuntimeError:
os.remove(f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz")
raise RuntimeError
def list_models():
"""
List the models in the model directory.
"""
models_info = get_models_info()
return sorted([[model_info[0]] for model_info in models_info])
def on_select_model_df(
evt: gr.SelectData,
):
"""
When a model is selected, update the statement.
"""
return evt.value
def convert_model(
model_name: str,
):
"""
Convert the model.
"""
if model_name == "":
gr.Warning(
"Please select a model.",
)
return list_models(), ""
if model_name.endswith(".onnx"):
gr.Warning(
"ONNX conversion not implemented.",
)
return list_models(), ""
try:
backends.convert_to_onnx(
f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}",
f"{constants.ONNX_MODEL_DIRECTORY}/{model_name[:-6]}.onnx",
)
except RuntimeError:
gr.Warning(
f"Could not convert net at `{model_name}`.",
)
return list_models(), "Conversion failed"
return list_models(), "Conversion successful"
def upload_model(
model_file: gr.File,
):
"""
Convert the model.
"""
if model_file is None:
gr.Warning(
"File not uploaded.",
)
return list_models()
try:
id = uuid.uuid4()
tmp_file_path = f"{constants.LEELA_MODEL_DIRECTORY}/{id}"
with open(
tmp_file_path,
"wb",
) as f:
f.write(model_file)
save_model(tmp_file_path)
except RuntimeError:
gr.Warning(
"Invalid file type.",
)
finally:
if os.path.exists(tmp_file_path):
os.remove(tmp_file_path)
return list_models()
def get_model_description(
model_name: str,
):
"""
Get the model description.
"""
if model_name == "":
gr.Warning(
"Please select a model.",
)
return ""
if model_name.endswith(".onnx"):
gr.Warning(
"ONNX description not implemented.",
)
return ""
try:
description = backends.describenet(
f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}",
)
except RuntimeError:
raise gr.Error(
f"Could not describe net at `{model_name}`.",
)
return description
def get_model_path(
model_name: str,
):
"""
Get the model path.
"""
if model_name == "":
gr.Warning(
"Please select a model.",
)
return None
if model_name.endswith(".onnx"):
return f"{constants.ONNX_MODEL_DIRECTORY}/{model_name}"
else:
return f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}"
with gr.Blocks() as interface:
model_file = gr.File(type="binary")
upload_button = gr.Button(
value="Upload",
)
with gr.Row():
with gr.Column(scale=2):
model_df = gr.Dataframe(
headers=["Available models"],
datatype=["str"],
interactive=False,
type="array",
value=list_models,
)
with gr.Column(scale=1):
with gr.Row():
model_name = gr.Textbox(label="Selected model", lines=1, interactive=False, scale=7)
conversion_status = gr.Textbox(
label="Conversion status",
lines=1,
interactive=False,
)
convert_button = gr.Button(
value="Convert",
)
describe_button = gr.Button(
value="Describe model",
)
model_description = gr.Textbox(
label="Model description",
lines=1,
interactive=False,
)
download_button = gr.Button(
value="Get download link",
)
download_file = gr.File(
type="filepath",
label="Download link",
interactive=False,
)
model_df.select(
on_select_model_df,
None,
model_name,
)
upload_button.click(
upload_model,
model_file,
model_df,
)
convert_button.click(
convert_model,
model_name,
[model_df, conversion_status],
)
describe_button.click(
get_model_description,
model_name,
model_description,
)
download_button.click(
get_model_path,
model_name,
download_file,
)