Spaces:
Sleeping
Sleeping
Ivan Lazarevich
commited on
Commit
•
796b62e
1
Parent(s):
db87971
release app
Browse files- LICENSE +201 -0
- README.md +2 -2
- app.py +285 -0
- banner.png +0 -0
- plotting.py +205 -0
- requirements.txt +3 -0
- utils.py +58 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: YOLOBench
|
3 |
+
emoji: 🚀
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from plotting import create_yolobench_plots, get_pareto_table
|
4 |
+
from utils import DEEPLITE_DARK_BLUE_GRADIO
|
5 |
+
|
6 |
+
def get_hw_description(hw_name):
|
7 |
+
HW_URLS = {
|
8 |
+
'Jetson Nano (GPU, ONNX Runtime, FP32)': 'https://8074457.fs1.hubspotusercontent-na1.net/hubfs/8074457/YOLOBench%20Hardware%20product%20sheets/JetsonNano_DataSheet_DS09366001v1.1.pdf',
|
9 |
+
'Raspberry Pi 4 Model B (CPU, TFLite, FP32)': 'https://8074457.fs1.hubspotusercontent-na1.net/hubfs/8074457/YOLOBench%20Hardware%20product%20sheets/raspberry-pi-4-datasheet.pdf',
|
10 |
+
'Intel® Core™i7-10875H (CPU, OpenVINO, FP32)': 'https://8074457.fs1.hubspotusercontent-na1.net/hubfs/8074457/YOLOBench%20Hardware%20product%20sheets/Intel_ARK_SpecificationsChart_2023_10_11.pdf',
|
11 |
+
'Khadas VIM3 (NPU, INT16)': 'https://8074457.fs1.hubspotusercontent-na1.net/hubfs/8074457/YOLOBench%20Hardware%20product%20sheets/khadas_vim3_specs.pdf',
|
12 |
+
'Orange Pi 5 (NPU, FP16)': 'https://8074457.fs1.hubspotusercontent-na1.net/hubfs/8074457/YOLOBench%20Hardware%20product%20sheets/OrangePi_5_RK3588S_User%20Manual_v1.5.pdf',
|
13 |
+
}
|
14 |
+
|
15 |
+
hw_url = HW_URLS[hw_name]
|
16 |
+
DESC = f"""
|
17 |
+
🔸 <span style="font-size:16px">Click </span>[<span style="font-size:16px">here</span>]({hw_url})<span style="font-size:16px"> for more information on the selected hardware platform.</span>
|
18 |
+
🔸 <span style="font-size:16px">Refer to the [Deeplite Torch Zoo](https://github.com/Deeplite/deeplite-torch-zoo/tree/develop/results/yolobench) for details about latency measurement experiments.</span>
|
19 |
+
"""
|
20 |
+
return DESC
|
21 |
+
|
22 |
+
|
23 |
+
with gr.Blocks(theme=gr.themes.Default(secondary_hue=DEEPLITE_DARK_BLUE_GRADIO),
|
24 |
+
css="table { width: 100%; }", analytics_enabled=True) as demo:
|
25 |
+
|
26 |
+
gr.HTML(
|
27 |
+
"""
|
28 |
+
<div align="center">
|
29 |
+
<img src="file/banner.png"/>
|
30 |
+
</div>
|
31 |
+
"""
|
32 |
+
)
|
33 |
+
|
34 |
+
# switch to light theme by default
|
35 |
+
demo.load(
|
36 |
+
None,
|
37 |
+
_js="""
|
38 |
+
() => {
|
39 |
+
let mediaQueryObj = window.matchMedia('(prefers-color-scheme: dark)');
|
40 |
+
let systemDarkTheme = window.location.href.includes("theme=system") && mediaQueryObj.matches;
|
41 |
+
if (mediaQueryObj.matches){
|
42 |
+
document.body.classList.toggle('dark');
|
43 |
+
document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)'
|
44 |
+
}
|
45 |
+
}
|
46 |
+
""",
|
47 |
+
)
|
48 |
+
|
49 |
+
demo.load(
|
50 |
+
None,
|
51 |
+
_js="""
|
52 |
+
() => {
|
53 |
+
const script2 = document.createElement("script");
|
54 |
+
script2.src = "https://www.googletagmanager.com/gtag/js?id=G-01G83VTHE0";
|
55 |
+
script2.async = true;
|
56 |
+
document.head.appendChild(script2);
|
57 |
+
window.dataLayer = window.dataLayer || [];
|
58 |
+
function gtag(){dataLayer.push(arguments);}
|
59 |
+
gtag('js', new Date());
|
60 |
+
gtag('config', 'G-01G83VTHE0', {
|
61 |
+
'page_path': "/spaces/deepliteai/yolobench",
|
62 |
+
'page_title': 'yolobench',
|
63 |
+
'cookie_flags': 'SameSite=None;Secure',
|
64 |
+
'debug_mode':true,
|
65 |
+
});
|
66 |
+
}
|
67 |
+
""",
|
68 |
+
)
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
gr.Markdown(
|
72 |
+
"""
|
73 |
+
<span style="font-size:16px">
|
74 |
+
|
75 |
+
🚀 <b>YOLOBench</b> 🚀 is a latency-accuracy benchmark of popular single-stage detectors from the YOLO series. Major highlights of this work are:
|
76 |
+
|
77 |
+
🔸 includes architectures from YOLOv3 to YOLOv8, <br>
|
78 |
+
🔸 trained on <span style="font-weight:bold">four</span> popular object detection datasets (COCO, VOC, WIDER FACE, SKU-110k), <br>
|
79 |
+
🔸 latency measured on <span style="font-weight:bold">five embedded hardware platforms</span> (Jetson Nano GPU, ARM CPU, Intel CPU, Khadas VIM3 NPU, Orange Pi NPU), <br>
|
80 |
+
🔸 all models are trained with <span style="font-weight:bold">the same</span> training loop and hyperparameters (as implemented in the [Ultralytics YOLOv8 codebase](https://github.com/ultralytics/ultralytics)), <br>
|
81 |
+
🔸 both <span style="font-weight:bold">the detection head structure</span> and <span style="font-weight:bold"> the loss function </span> used are that of YOLOv8, giving a chance to isolate the contribution of the backbone/neck architecture on the latency-accuracy trade-off of YOLO models. <br>
|
82 |
+
In particular, we show that older backbone/neck structures like those of YOLOv3 and YOLOv4 are still competitive compared to more recent architectures in a controlled environment. For more details, please refer to the [arXiv preprint](https://arxiv.org/abs/2307.13901) and the [codebase](https://github.com/Deeplite/deeplite-torch-zoo).
|
83 |
+
|
84 |
+
#
|
85 |
+
|
86 |
+
</span>
|
87 |
+
|
88 |
+
#
|
89 |
+
"""
|
90 |
+
)
|
91 |
+
|
92 |
+
with gr.Row(equal_height=True):
|
93 |
+
with gr.Column():
|
94 |
+
hardware_name = gr.Dropdown(
|
95 |
+
choices=[
|
96 |
+
'Jetson Nano (GPU, ONNX Runtime, FP32)',
|
97 |
+
'Raspberry Pi 4 Model B (CPU, TFLite, FP32)',
|
98 |
+
'Intel® Core™i7-10875H (CPU, OpenVINO, FP32)',
|
99 |
+
'Khadas VIM3 (NPU, INT16)',
|
100 |
+
'Orange Pi 5 (NPU, FP16)',
|
101 |
+
],
|
102 |
+
value='Jetson Nano (GPU, ONNX Runtime, FP32)',
|
103 |
+
label='Hardware',
|
104 |
+
)
|
105 |
+
with gr.Column():
|
106 |
+
dataset_name = gr.Dropdown(
|
107 |
+
choices=['COCO', 'PASCAL VOC', 'SKU-110K', 'WIDERFACE'],
|
108 |
+
value='COCO',
|
109 |
+
label='Dataset',
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Row(equal_height=True):
|
113 |
+
with gr.Column():
|
114 |
+
hardware_desc = gr.Markdown(get_hw_description(hardware_name.value))
|
115 |
+
|
116 |
+
with gr.Column():
|
117 |
+
metric_name = gr.Radio(
|
118 |
+
['mAP@0.5:0.95', 'mAP@0.5', 'Precision', 'Recall'],
|
119 |
+
value='mAP@0.5:0.95',
|
120 |
+
label='Accuracy metric to plot',
|
121 |
+
)
|
122 |
+
|
123 |
+
with gr.Row(equal_height=True):
|
124 |
+
with gr.Column():
|
125 |
+
gr.Markdown("""
|
126 |
+
<span style="font-size:16px">
|
127 |
+
|
128 |
+
🚀 <span style="font-weight:bold">Want to add your own hardware benchmarks to YOLOBench?</span> 🚀
|
129 |
+
Contact us [here](https://info.deeplite.ai/add_yolobench_data) for your benchmarking kit and we'll set you up!
|
130 |
+
|
131 |
+
</span>
|
132 |
+
""")
|
133 |
+
|
134 |
+
with gr.Column():
|
135 |
+
vis_options = gr.CheckboxGroup(
|
136 |
+
[
|
137 |
+
'Model family',
|
138 |
+
'Highlight Pareto',
|
139 |
+
'Show Pareto only',
|
140 |
+
'Log x-axis'
|
141 |
+
],
|
142 |
+
value=['Model family',],
|
143 |
+
label='Visualization options',
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
upper_panel_fig = gr.Plot(show_label=False)
|
149 |
+
|
150 |
+
gr.Markdown(
|
151 |
+
"""
|
152 |
+
##
|
153 |
+
<span style="font-size:16px">
|
154 |
+
|
155 |
+
Models from this benchmark can be loaded using [Deeplite Torch Zoo](https://github.com/Deeplite/deeplite-torch-zoo) as follows:
|
156 |
+
|
157 |
+
</span>
|
158 |
+
|
159 |
+
##
|
160 |
+
|
161 |
+
```python
|
162 |
+
from deeplite_torch_zoo import get_model
|
163 |
+
model = get_model(
|
164 |
+
model_name='yolo4n', # create a YOLOv4n model for the COCO dataset
|
165 |
+
dataset_name='coco', # (`n` corresponds to width factor 0.25, depth factor 0.33)
|
166 |
+
pretrained=False, #
|
167 |
+
custom_head='v8' # attach a YOLOv8 detection head to YOLOv4n backbone+neck
|
168 |
+
)
|
169 |
+
```
|
170 |
+
|
171 |
+
<span style="font-size:16px">
|
172 |
+
|
173 |
+
To train a model, run
|
174 |
+
|
175 |
+
</span>
|
176 |
+
|
177 |
+
```python
|
178 |
+
from deeplite_torch_zoo.trainer import Detector
|
179 |
+
model = Detector(torch_model=model) # previously created YOLOv4n model
|
180 |
+
model.train(data='VOC.yaml', epochs=100, imgsz=480) # same arguments as the Ultralytics trainer object
|
181 |
+
```
|
182 |
+
|
183 |
+
##
|
184 |
+
|
185 |
+
<details>
|
186 |
+
<summary>Model naming conventions</summary>
|
187 |
+
|
188 |
+
##
|
189 |
+
|
190 |
+
The model naming convention is that a model named `yolo8d67w25` is a YOLOv8 model with a depth factor of 0.67 and width factor of 0.25. Conventional depth/width factor value namings (n, s, m, l models) are used where possible. YOLOv6(s, m, l) models are considered to be different architectures due to differences other than the depth/width factor value. For every architecture, there are 3 variations in depth factor (0.33, 0.67, 1.0) and 4 variations in width factor (0.25, 0.5, 0.75, 1.0), except for YOLOv7 models, for which only width factor variations are considered while depth is fixed.
|
191 |
+
</details>
|
192 |
+
|
193 |
+
##
|
194 |
+
|
195 |
+
<span style="font-size:20px">
|
196 |
+
Pareto-optimal models
|
197 |
+
</span>
|
198 |
+
|
199 |
+
##
|
200 |
+
|
201 |
+
COCO pre-trained models are ready for download. Other models coming soon!
|
202 |
+
"""
|
203 |
+
)
|
204 |
+
|
205 |
+
table_mode = gr.Radio(
|
206 |
+
['Show top-10 models', 'Show all'],
|
207 |
+
value='Show top-10 models',
|
208 |
+
label='Pareto model table'
|
209 |
+
)
|
210 |
+
|
211 |
+
with gr.Row():
|
212 |
+
# pareto_table = gr.DataFrame(interactive=False)
|
213 |
+
pareto_table = gr.HTML()
|
214 |
+
|
215 |
+
gr.Markdown(
|
216 |
+
"""
|
217 |
+
## Citation
|
218 |
+
```
|
219 |
+
Accepted at ICCV 2023 Workshop on Resource-Efficient Deep Learning for Computer Vision (RCV'23)
|
220 |
+
@article{lazarevich2023yolobench,
|
221 |
+
title={YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems},
|
222 |
+
author={Lazarevich, Ivan and Grimaldi, Matteo and Kumar, Ravish and Mitra, Saptarshi and Khan, Shahrukh and Sah, Sudhakar},
|
223 |
+
journal={arXiv preprint arXiv:2307.13901},
|
224 |
+
year={2023}
|
225 |
+
}
|
226 |
+
```
|
227 |
+
"""
|
228 |
+
)
|
229 |
+
|
230 |
+
inputs = [dataset_name, hardware_name, metric_name, vis_options, table_mode]
|
231 |
+
|
232 |
+
# plot by default (VOC, Raspi4)
|
233 |
+
demo.load(
|
234 |
+
fn=create_yolobench_plots,
|
235 |
+
inputs=inputs,
|
236 |
+
outputs=[upper_panel_fig, pareto_table],
|
237 |
+
)
|
238 |
+
|
239 |
+
demo.load(
|
240 |
+
fn=get_pareto_table,
|
241 |
+
inputs=[dataset_name, hardware_name, metric_name],
|
242 |
+
outputs=[pareto_table],
|
243 |
+
)
|
244 |
+
|
245 |
+
# update in case of dataset selection
|
246 |
+
dataset_name.change(
|
247 |
+
fn=create_yolobench_plots,
|
248 |
+
inputs=inputs,
|
249 |
+
outputs=[upper_panel_fig, pareto_table],
|
250 |
+
)
|
251 |
+
# update in case of metric selection
|
252 |
+
metric_name.change(
|
253 |
+
fn=create_yolobench_plots,
|
254 |
+
inputs=inputs,
|
255 |
+
outputs=[upper_panel_fig, pareto_table],
|
256 |
+
)
|
257 |
+
|
258 |
+
vis_options.change(
|
259 |
+
fn=create_yolobench_plots,
|
260 |
+
inputs=inputs,
|
261 |
+
outputs=[upper_panel_fig, pareto_table],
|
262 |
+
)
|
263 |
+
|
264 |
+
table_mode.change(
|
265 |
+
fn=create_yolobench_plots,
|
266 |
+
inputs=inputs,
|
267 |
+
outputs=[upper_panel_fig, pareto_table],
|
268 |
+
)
|
269 |
+
|
270 |
+
# update in case of device selection
|
271 |
+
hardware_name.change(
|
272 |
+
fn=create_yolobench_plots,
|
273 |
+
inputs=inputs,
|
274 |
+
outputs=[upper_panel_fig, pareto_table],
|
275 |
+
)
|
276 |
+
|
277 |
+
hardware_name.change(
|
278 |
+
fn=get_hw_description,
|
279 |
+
inputs=[hardware_name],
|
280 |
+
outputs=[hardware_desc],
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
demo.launch()
|
banner.png
ADDED
plotting.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.express as px
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
|
4 |
+
from utils import DEEPLITE_LIGHT_BLUE_HEX, load_yolobench_data
|
5 |
+
|
6 |
+
|
7 |
+
df, pareto_indices = load_yolobench_data()
|
8 |
+
|
9 |
+
|
10 |
+
METRIC_NAME_MAPPING = {
|
11 |
+
'mAP@0.5': 'mAP_0.5',
|
12 |
+
'mAP@0.5:0.95': 'mAP_0.5:0.95',
|
13 |
+
'Precision': 'precision',
|
14 |
+
'Recall': 'recall',
|
15 |
+
}
|
16 |
+
|
17 |
+
METRIC_KEYS_TO_NAMES = {v: k for k, v in METRIC_NAME_MAPPING.items()}
|
18 |
+
|
19 |
+
|
20 |
+
LATENCY_KEYS = {
|
21 |
+
'Raspberry Pi 4 Model B (CPU, TFLite, FP32)': 'raspi4_tflite_latency',
|
22 |
+
'Jetson Nano (GPU, ONNX Runtime, FP32)': 'nano_gpu_latency',
|
23 |
+
'Intel® Core™i7-10875H (CPU, OpenVINO, FP32)': 'openvino_latency',
|
24 |
+
'Khadas VIM3 (NPU, INT16)': 'vim3_latency',
|
25 |
+
'Orange Pi 5 (NPU, FP16)': 'orange_pi_latency',
|
26 |
+
}
|
27 |
+
|
28 |
+
LATENCY_KEYS_TO_NAMES = {v: k for k, v in LATENCY_KEYS.items()}
|
29 |
+
|
30 |
+
DATASET_TAGS = {
|
31 |
+
'PASCAL VOC': 'voc',
|
32 |
+
'SKU-110K': 'sku',
|
33 |
+
'WIDERFACE': 'wider',
|
34 |
+
'COCO': 'coco',
|
35 |
+
}
|
36 |
+
|
37 |
+
DATASET_TAGS_TO_NAMES = {v: k for k, v in DATASET_TAGS.items()}
|
38 |
+
|
39 |
+
|
40 |
+
def get_scatter_plot(
|
41 |
+
dataset_tag,
|
42 |
+
metric_tag,
|
43 |
+
latency_key,
|
44 |
+
model_family_coloring=True,
|
45 |
+
add_pareto_frontier=False,
|
46 |
+
plot_pareto_only=False,
|
47 |
+
log_axis=False,
|
48 |
+
):
|
49 |
+
fig_opts, layout_opts = {'opacity': 0.5, 'color_discrete_sequence': [DEEPLITE_LIGHT_BLUE_HEX]}, {}
|
50 |
+
if model_family_coloring:
|
51 |
+
fig_opts = {
|
52 |
+
'color': 'model_family',
|
53 |
+
'opacity': 0.75,
|
54 |
+
'color_discrete_sequence': px.colors.qualitative.Plotly,
|
55 |
+
}
|
56 |
+
layout_opts = {
|
57 |
+
'legend': dict(
|
58 |
+
title='Model family<br>(click to toggle)',
|
59 |
+
)
|
60 |
+
}
|
61 |
+
|
62 |
+
frontier = None
|
63 |
+
if plot_pareto_only:
|
64 |
+
metric_key = f'{metric_tag}_{dataset_tag}'
|
65 |
+
frontier = pareto_indices[metric_key][latency_key]
|
66 |
+
|
67 |
+
fig = px.scatter(
|
68 |
+
df if frontier is None else df.iloc[frontier, :],
|
69 |
+
x=latency_key,
|
70 |
+
y=f'{metric_tag}_{dataset_tag}',
|
71 |
+
title=f'{METRIC_KEYS_TO_NAMES[metric_tag]}-latency scatter plot',
|
72 |
+
hover_data={
|
73 |
+
'model_name': True,
|
74 |
+
'model_family': False,
|
75 |
+
latency_key: ':.2f',
|
76 |
+
f'{metric_tag}_{dataset_tag}': ':.2f',
|
77 |
+
},
|
78 |
+
labels={
|
79 |
+
'model_name': 'Model name',
|
80 |
+
latency_key: 'Latency',
|
81 |
+
f'{metric_tag}_{dataset_tag}': METRIC_KEYS_TO_NAMES[metric_tag],
|
82 |
+
},
|
83 |
+
template='plotly_white',
|
84 |
+
**fig_opts,
|
85 |
+
)
|
86 |
+
if log_axis:
|
87 |
+
fig.update_xaxes(type='log')
|
88 |
+
|
89 |
+
fig.update_layout(
|
90 |
+
height=600,
|
91 |
+
modebar_remove=['lasso', 'autoscale', 'zoomin', 'zoomout', 'select2d', 'select'],
|
92 |
+
xaxis_title=f'{LATENCY_KEYS_TO_NAMES[latency_key]} latency, ms',
|
93 |
+
yaxis_title=f"{METRIC_KEYS_TO_NAMES[metric_tag]}",
|
94 |
+
xaxis=dict(
|
95 |
+
rangeslider=dict(
|
96 |
+
visible=True,
|
97 |
+
bgcolor=DEEPLITE_LIGHT_BLUE_HEX,
|
98 |
+
thickness=0.02,
|
99 |
+
),
|
100 |
+
),
|
101 |
+
yaxis=dict(
|
102 |
+
fixedrange=False,
|
103 |
+
),
|
104 |
+
hoverlabel=dict(
|
105 |
+
# bgcolor="white",
|
106 |
+
font_size=14,
|
107 |
+
font_family='Source Sans Pro'
|
108 |
+
),
|
109 |
+
**layout_opts,
|
110 |
+
)
|
111 |
+
if add_pareto_frontier:
|
112 |
+
fig = pareto_frontier_layer(fig, dataset_tag, metric_tag, latency_key)
|
113 |
+
return fig
|
114 |
+
|
115 |
+
|
116 |
+
def create_yolobench_plots(
|
117 |
+
dataset_name,
|
118 |
+
hardware_name,
|
119 |
+
metric_name,
|
120 |
+
vis_options,
|
121 |
+
table_mode,
|
122 |
+
):
|
123 |
+
model_family_coloring = 'Model family' in vis_options
|
124 |
+
add_pareto_frontier = 'Highlight Pareto' in vis_options
|
125 |
+
plot_pareto_only = 'Show Pareto only' in vis_options
|
126 |
+
log_axis = 'Log x-axis' in vis_options
|
127 |
+
fig = get_scatter_plot(
|
128 |
+
DATASET_TAGS[dataset_name],
|
129 |
+
METRIC_NAME_MAPPING[metric_name],
|
130 |
+
LATENCY_KEYS[hardware_name],
|
131 |
+
model_family_coloring,
|
132 |
+
add_pareto_frontier,
|
133 |
+
plot_pareto_only,
|
134 |
+
log_axis,
|
135 |
+
)
|
136 |
+
pareto_table = get_pareto_table(
|
137 |
+
dataset_name, hardware_name, metric_name, expand_table='Show all' in table_mode
|
138 |
+
)
|
139 |
+
return fig, pareto_table
|
140 |
+
|
141 |
+
|
142 |
+
def pareto_frontier_layer(
|
143 |
+
fig,
|
144 |
+
dataset_tag,
|
145 |
+
metric_tag,
|
146 |
+
latency_key,
|
147 |
+
):
|
148 |
+
metric_key = f'{metric_tag}_{dataset_tag}'
|
149 |
+
frontier = pareto_indices[metric_key][latency_key]
|
150 |
+
fig.add_trace(
|
151 |
+
go.Scatter(
|
152 |
+
x=df.iloc[frontier, :][latency_key],
|
153 |
+
y=df.iloc[frontier, :][metric_key],
|
154 |
+
mode='lines',
|
155 |
+
opacity=0.5,
|
156 |
+
line=go.scatter.Line(color='grey'),
|
157 |
+
showlegend=False,
|
158 |
+
name=metric_key,
|
159 |
+
)
|
160 |
+
)
|
161 |
+
return fig
|
162 |
+
|
163 |
+
|
164 |
+
def get_pareto_table(
|
165 |
+
dataset_name, hardware_name, metric_name, expand_table=False,
|
166 |
+
):
|
167 |
+
dataset_tag = DATASET_TAGS[dataset_name]
|
168 |
+
metric_tag = METRIC_NAME_MAPPING[metric_name]
|
169 |
+
latency_key = LATENCY_KEYS[hardware_name]
|
170 |
+
metric_key = f'{metric_tag}_{dataset_tag}'
|
171 |
+
|
172 |
+
latency_key_final = f'{LATENCY_KEYS_TO_NAMES[latency_key]} latency, ms'
|
173 |
+
metric_key_final = METRIC_KEYS_TO_NAMES[metric_tag]
|
174 |
+
|
175 |
+
frontier = pareto_indices[metric_key][latency_key]
|
176 |
+
table_df = df.iloc[frontier, :][['model_name', metric_key, latency_key]]
|
177 |
+
table_df['Input resolution (px)'] = table_df['model_name'].apply(lambda name: name.split('_')[-1])
|
178 |
+
table_df['Model name'] = table_df['model_name'].apply(lambda name: name.split('_')[0])
|
179 |
+
table_df[metric_key_final] = table_df[metric_key].apply(lambda val: round(val, 3))
|
180 |
+
table_df[latency_key_final] = table_df[latency_key].apply(lambda val: round(val, 2))
|
181 |
+
|
182 |
+
def make_clickable(url, name):
|
183 |
+
return f'<a href="{url}">{name}</a>'
|
184 |
+
|
185 |
+
|
186 |
+
if dataset_name == 'COCO':
|
187 |
+
table_df['Download link'] = table_df['model_name'].apply(
|
188 |
+
lambda name: f'https://download.deeplite.ai/zoo/models/YOLOBench/{name.split("_")[0]}_640.pt'
|
189 |
+
)
|
190 |
+
table_df['Download link'] = table_df.apply(lambda x: make_clickable(x['Download link'], 'Weights download'), axis=1)
|
191 |
+
else:
|
192 |
+
table_df['Download link'] = table_df['model_name'].apply(lambda s: 'Coming soon')
|
193 |
+
|
194 |
+
|
195 |
+
table_df = table_df[['Model name', 'Input resolution (px)',
|
196 |
+
metric_key_final, latency_key_final, 'Download link']].sort_values(by=metric_key_final, ascending=False)
|
197 |
+
if not expand_table:
|
198 |
+
table_df = table_df.iloc[:10, :]
|
199 |
+
|
200 |
+
table_df = table_df.to_html(
|
201 |
+
classes='table',
|
202 |
+
escape=False, render_links=True, index=False
|
203 |
+
)
|
204 |
+
|
205 |
+
return table_df
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.41.2
|
2 |
+
plotly==5.16.1
|
3 |
+
pandas==1.4.4
|
utils.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import urllib.parse
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from gradio.themes.utils.colors import Color
|
5 |
+
|
6 |
+
|
7 |
+
DATA_URL = 'https://raw.githubusercontent.com/Deeplite/deeplite-torch-zoo/develop/results/yolobench/'
|
8 |
+
|
9 |
+
DEEPLITE_DARK_BLUE_RGB = (0, 66, 107)
|
10 |
+
DEEPLITE_DARK_BLUE_HEX = '#00426B'
|
11 |
+
|
12 |
+
DEEPLITE_LIGHT_BLUE_RGB = (0, 148, 206)
|
13 |
+
DEEPLITE_LIGHT_BLUE_HEX = '#0094CE'
|
14 |
+
|
15 |
+
DEEPLITE_DARK_BLUE_GRADIO = Color(
|
16 |
+
name='deeplite_dark_blue',
|
17 |
+
c50=DEEPLITE_DARK_BLUE_HEX,
|
18 |
+
c100=DEEPLITE_DARK_BLUE_HEX,
|
19 |
+
c200=DEEPLITE_DARK_BLUE_HEX,
|
20 |
+
c300=DEEPLITE_DARK_BLUE_HEX,
|
21 |
+
c400=DEEPLITE_DARK_BLUE_HEX,
|
22 |
+
c500=DEEPLITE_DARK_BLUE_HEX,
|
23 |
+
c600=DEEPLITE_DARK_BLUE_HEX,
|
24 |
+
c700=DEEPLITE_DARK_BLUE_HEX,
|
25 |
+
c800=DEEPLITE_DARK_BLUE_HEX,
|
26 |
+
c900=DEEPLITE_DARK_BLUE_HEX,
|
27 |
+
c950=DEEPLITE_DARK_BLUE_HEX,
|
28 |
+
)
|
29 |
+
|
30 |
+
DEEPLITE_LIGHT_BLUE_GRADIO = Color(
|
31 |
+
name='deeplite_dark_blue',
|
32 |
+
c50=DEEPLITE_LIGHT_BLUE_HEX,
|
33 |
+
c100=DEEPLITE_LIGHT_BLUE_HEX,
|
34 |
+
c200=DEEPLITE_LIGHT_BLUE_HEX,
|
35 |
+
c300=DEEPLITE_LIGHT_BLUE_HEX,
|
36 |
+
c400=DEEPLITE_LIGHT_BLUE_HEX,
|
37 |
+
c500=DEEPLITE_LIGHT_BLUE_HEX,
|
38 |
+
c600=DEEPLITE_LIGHT_BLUE_HEX,
|
39 |
+
c700=DEEPLITE_LIGHT_BLUE_HEX,
|
40 |
+
c800=DEEPLITE_LIGHT_BLUE_HEX,
|
41 |
+
c900=DEEPLITE_LIGHT_BLUE_HEX,
|
42 |
+
c950=DEEPLITE_LIGHT_BLUE_HEX,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
def load_yolobench_data():
|
47 |
+
df = pd.read_csv(urllib.parse.urljoin(DATA_URL, 'merged_results.csv'))
|
48 |
+
pareto_indices_df = pd.read_csv(urllib.parse.urljoin(DATA_URL, 'pareto_indices.csv'))
|
49 |
+
pareto_indices = {}
|
50 |
+
for row_idx in range(pareto_indices_df.shape[0]):
|
51 |
+
data_key = pareto_indices_df.iloc[row_idx, :]['data']
|
52 |
+
if data_key not in pareto_indices:
|
53 |
+
pareto_indices[data_key] = {}
|
54 |
+
hw_key = pareto_indices_df.iloc[row_idx, :]['hardware']
|
55 |
+
indices = pareto_indices_df.iloc[row_idx, :]['pareto_indices']
|
56 |
+
indices = [int(val) for val in indices.split(',')]
|
57 |
+
pareto_indices[data_key][hw_key] = indices
|
58 |
+
return df, pareto_indices
|