Spaces:
Sleeping
Sleeping
Upload dataset.py
Browse files- dataset.py +465 -0
dataset.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
from typing import Dict, List, Tuple, Optional
|
| 8 |
+
import re
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
class MultiModalFERDataset(Dataset):
|
| 12 |
+
"""
|
| 13 |
+
Multi-modal Facial Expression Recognition Dataset for RGB and Thermal images
|
| 14 |
+
Supports 7 emotion classes: angry, disgust, fear, happy, neutral, sad, surprised
|
| 15 |
+
Supports 3 modes: 'rgb', 'thermal', 'combined'
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self,
|
| 19 |
+
data_dir: str,
|
| 20 |
+
mode: str = 'rgb',
|
| 21 |
+
split_ratio: float = 0.8,
|
| 22 |
+
split_type: str = 'train',
|
| 23 |
+
transform_rgb=None,
|
| 24 |
+
transform_thermal=None,
|
| 25 |
+
use_augmented: bool = False):
|
| 26 |
+
"""
|
| 27 |
+
Args:
|
| 28 |
+
data_dir: Path to the Data directory containing RGB/Thermal/RgbAug/ThermalAug folders
|
| 29 |
+
mode: 'rgb', 'thermal', or 'combined' for fusion approaches
|
| 30 |
+
split_ratio: Ratio for train/test split (0.8 means 80% train, 20% test)
|
| 31 |
+
split_type: 'train' or 'test'
|
| 32 |
+
transform_rgb: Transform for RGB images
|
| 33 |
+
transform_thermal: Transform for thermal images
|
| 34 |
+
use_augmented: Whether to include augmented data
|
| 35 |
+
"""
|
| 36 |
+
self.data_dir = data_dir
|
| 37 |
+
self.mode = mode.lower()
|
| 38 |
+
self.split_ratio = split_ratio
|
| 39 |
+
self.split_type = split_type
|
| 40 |
+
self.transform_rgb = transform_rgb
|
| 41 |
+
self.transform_thermal = transform_thermal
|
| 42 |
+
self.use_augmented = use_augmented
|
| 43 |
+
|
| 44 |
+
# Validate mode
|
| 45 |
+
if self.mode not in ['rgb', 'thermal', 'combined']:
|
| 46 |
+
raise ValueError("Mode must be 'rgb', 'thermal', or 'combined'")
|
| 47 |
+
|
| 48 |
+
# Define emotion classes (mapping from filename format)
|
| 49 |
+
self.emotion_classes = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprised']
|
| 50 |
+
self.class_to_idx = {emotion: idx for idx, emotion in enumerate(self.emotion_classes)}
|
| 51 |
+
self.idx_to_class = {idx: emotion for emotion, idx in self.class_to_idx.items()}
|
| 52 |
+
|
| 53 |
+
# Load image paths and labels
|
| 54 |
+
self.rgb_paths = []
|
| 55 |
+
self.thermal_paths = []
|
| 56 |
+
self.labels = []
|
| 57 |
+
self._load_data()
|
| 58 |
+
|
| 59 |
+
def _load_data(self):
|
| 60 |
+
"""Load all image paths and corresponding labels from filename-based structure"""
|
| 61 |
+
# Define directories to search
|
| 62 |
+
rgb_dirs = [os.path.join(self.data_dir, 'RGB')]
|
| 63 |
+
thermal_dirs = [os.path.join(self.data_dir, 'Thermal')]
|
| 64 |
+
|
| 65 |
+
if self.use_augmented:
|
| 66 |
+
rgb_dirs.append(os.path.join(self.data_dir, 'RgbAug'))
|
| 67 |
+
thermal_dirs.append(os.path.join(self.data_dir, 'ThermalAug'))
|
| 68 |
+
|
| 69 |
+
# Collect all RGB and Thermal files
|
| 70 |
+
rgb_files = []
|
| 71 |
+
thermal_files = []
|
| 72 |
+
|
| 73 |
+
# Load RGB files
|
| 74 |
+
for rgb_dir in rgb_dirs:
|
| 75 |
+
if os.path.exists(rgb_dir):
|
| 76 |
+
for filename in os.listdir(rgb_dir):
|
| 77 |
+
if filename.startswith('R_') and filename.lower().endswith(('.jpg', '.jpeg', '.bmp', '.png')):
|
| 78 |
+
rgb_files.append((os.path.join(rgb_dir, filename), filename))
|
| 79 |
+
|
| 80 |
+
# Load Thermal files
|
| 81 |
+
for thermal_dir in thermal_dirs:
|
| 82 |
+
if os.path.exists(thermal_dir):
|
| 83 |
+
for filename in os.listdir(thermal_dir):
|
| 84 |
+
if filename.startswith('T_') and filename.lower().endswith(('.jpg', '.jpeg', '.bmp', '.png')):
|
| 85 |
+
thermal_files.append((os.path.join(thermal_dir, filename), filename))
|
| 86 |
+
|
| 87 |
+
# Create data based on mode
|
| 88 |
+
if self.mode == 'combined':
|
| 89 |
+
self._create_paired_data(rgb_files, thermal_files)
|
| 90 |
+
elif self.mode == 'rgb':
|
| 91 |
+
self._create_single_modal_data(rgb_files, 'rgb')
|
| 92 |
+
elif self.mode == 'thermal':
|
| 93 |
+
self._create_single_modal_data(thermal_files, 'thermal')
|
| 94 |
+
|
| 95 |
+
# Apply train/test split
|
| 96 |
+
self._apply_split()
|
| 97 |
+
|
| 98 |
+
def _parse_filename(self, filename: str) -> Tuple[str, str]:
|
| 99 |
+
"""Parse filename to extract emotion class and unique ID
|
| 100 |
+
Format: [R|T]_Classname_ID_Source.ext
|
| 101 |
+
Returns: (emotion_class, unique_id)
|
| 102 |
+
"""
|
| 103 |
+
# Remove extension and split by underscore
|
| 104 |
+
basename = os.path.splitext(filename)[0]
|
| 105 |
+
parts = basename.split('_')
|
| 106 |
+
|
| 107 |
+
if len(parts) >= 4:
|
| 108 |
+
modality = parts[0] # R or T
|
| 109 |
+
emotion = parts[1].lower()
|
| 110 |
+
unique_id = parts[2]
|
| 111 |
+
source = parts[3]
|
| 112 |
+
|
| 113 |
+
# Map 'surprised' to 'surprised' (handle naming inconsistency)
|
| 114 |
+
if emotion == 'surprised':
|
| 115 |
+
emotion = 'surprised'
|
| 116 |
+
|
| 117 |
+
return emotion, f"{unique_id}_{source}"
|
| 118 |
+
else:
|
| 119 |
+
raise ValueError(f"Invalid filename format: {filename}")
|
| 120 |
+
|
| 121 |
+
def _create_paired_data(self, rgb_files: List, thermal_files: List):
|
| 122 |
+
"""Create paired RGB-Thermal data for combined mode"""
|
| 123 |
+
# Create mapping from unique_id to file paths (only one per unique_id to avoid duplication)
|
| 124 |
+
rgb_map = {}
|
| 125 |
+
thermal_map = {}
|
| 126 |
+
|
| 127 |
+
for rgb_path, rgb_filename in rgb_files:
|
| 128 |
+
try:
|
| 129 |
+
emotion, unique_id = self._parse_filename(rgb_filename)
|
| 130 |
+
if emotion in self.class_to_idx:
|
| 131 |
+
# Only keep the first file per unique_id to avoid duplication
|
| 132 |
+
if unique_id not in rgb_map:
|
| 133 |
+
rgb_map[unique_id] = (rgb_path, emotion)
|
| 134 |
+
except:
|
| 135 |
+
continue
|
| 136 |
+
|
| 137 |
+
for thermal_path, thermal_filename in thermal_files:
|
| 138 |
+
try:
|
| 139 |
+
emotion, unique_id = self._parse_filename(thermal_filename)
|
| 140 |
+
if emotion in self.class_to_idx:
|
| 141 |
+
# Only keep the first file per unique_id to avoid duplication
|
| 142 |
+
if unique_id not in thermal_map:
|
| 143 |
+
thermal_map[unique_id] = (thermal_path, emotion)
|
| 144 |
+
except:
|
| 145 |
+
continue
|
| 146 |
+
|
| 147 |
+
# Find common unique_ids that have both RGB and Thermal
|
| 148 |
+
common_ids = set(rgb_map.keys()) & set(thermal_map.keys())
|
| 149 |
+
|
| 150 |
+
for unique_id in common_ids:
|
| 151 |
+
rgb_path, rgb_emotion = rgb_map[unique_id]
|
| 152 |
+
thermal_path, thermal_emotion = thermal_map[unique_id]
|
| 153 |
+
|
| 154 |
+
# Ensure emotions match
|
| 155 |
+
if rgb_emotion == thermal_emotion:
|
| 156 |
+
self.rgb_paths.append(rgb_path)
|
| 157 |
+
self.thermal_paths.append(thermal_path)
|
| 158 |
+
self.labels.append(self.class_to_idx[rgb_emotion])
|
| 159 |
+
|
| 160 |
+
def _create_single_modal_data(self, files: List, modality: str):
|
| 161 |
+
"""Create single modal data for RGB-only or Thermal-only mode"""
|
| 162 |
+
for file_path, filename in files:
|
| 163 |
+
try:
|
| 164 |
+
emotion, unique_id = self._parse_filename(filename)
|
| 165 |
+
if emotion in self.class_to_idx:
|
| 166 |
+
if modality == 'rgb':
|
| 167 |
+
self.rgb_paths.append(file_path)
|
| 168 |
+
self.thermal_paths.append(None)
|
| 169 |
+
else: # thermal
|
| 170 |
+
self.rgb_paths.append(None)
|
| 171 |
+
self.thermal_paths.append(file_path)
|
| 172 |
+
self.labels.append(self.class_to_idx[emotion])
|
| 173 |
+
except:
|
| 174 |
+
continue
|
| 175 |
+
|
| 176 |
+
def _apply_split(self):
|
| 177 |
+
"""Apply train/test split based on split_ratio"""
|
| 178 |
+
total_samples = len(self.labels)
|
| 179 |
+
train_size = int(total_samples * self.split_ratio)
|
| 180 |
+
|
| 181 |
+
# Create indices and shuffle
|
| 182 |
+
indices = np.random.RandomState(42).permutation(total_samples)
|
| 183 |
+
|
| 184 |
+
if self.split_type == 'train':
|
| 185 |
+
selected_indices = indices[:train_size]
|
| 186 |
+
else: # test
|
| 187 |
+
selected_indices = indices[train_size:]
|
| 188 |
+
|
| 189 |
+
# Filter data based on selected indices
|
| 190 |
+
self.rgb_paths = [self.rgb_paths[i] for i in selected_indices]
|
| 191 |
+
self.thermal_paths = [self.thermal_paths[i] for i in selected_indices]
|
| 192 |
+
self.labels = [self.labels[i] for i in selected_indices]
|
| 193 |
+
|
| 194 |
+
def __len__(self):
|
| 195 |
+
return len(self.labels)
|
| 196 |
+
|
| 197 |
+
def __getitem__(self, idx):
|
| 198 |
+
label = self.labels[idx]
|
| 199 |
+
|
| 200 |
+
if self.mode == 'rgb':
|
| 201 |
+
# RGB only mode
|
| 202 |
+
rgb_image = Image.open(self.rgb_paths[idx]).convert('RGB')
|
| 203 |
+
if self.transform_rgb:
|
| 204 |
+
rgb_image = self.transform_rgb(rgb_image)
|
| 205 |
+
return rgb_image, label
|
| 206 |
+
|
| 207 |
+
elif self.mode == 'thermal':
|
| 208 |
+
# Thermal only mode
|
| 209 |
+
thermal_image = Image.open(self.thermal_paths[idx])
|
| 210 |
+
# Convert thermal to grayscale then to 3-channel for ViT compatibility
|
| 211 |
+
if thermal_image.mode != 'L':
|
| 212 |
+
thermal_image = thermal_image.convert('L')
|
| 213 |
+
thermal_image = thermal_image.convert('RGB') # Convert to 3-channel
|
| 214 |
+
|
| 215 |
+
if self.transform_thermal:
|
| 216 |
+
thermal_image = self.transform_thermal(thermal_image)
|
| 217 |
+
return thermal_image, label
|
| 218 |
+
|
| 219 |
+
elif self.mode == 'combined':
|
| 220 |
+
# Combined mode - return both RGB and Thermal
|
| 221 |
+
rgb_image = Image.open(self.rgb_paths[idx]).convert('RGB')
|
| 222 |
+
thermal_image = Image.open(self.thermal_paths[idx])
|
| 223 |
+
|
| 224 |
+
# Convert thermal to grayscale then to 3-channel
|
| 225 |
+
if thermal_image.mode != 'L':
|
| 226 |
+
thermal_image = thermal_image.convert('L')
|
| 227 |
+
thermal_image = thermal_image.convert('RGB')
|
| 228 |
+
|
| 229 |
+
if self.transform_rgb:
|
| 230 |
+
rgb_image = self.transform_rgb(rgb_image)
|
| 231 |
+
if self.transform_thermal:
|
| 232 |
+
thermal_image = self.transform_thermal(thermal_image)
|
| 233 |
+
|
| 234 |
+
return {'rgb': rgb_image, 'thermal': thermal_image}, label
|
| 235 |
+
|
| 236 |
+
def get_class_distribution(self) -> Dict[str, int]:
|
| 237 |
+
"""Get the distribution of classes in the dataset"""
|
| 238 |
+
distribution = {}
|
| 239 |
+
for emotion in self.emotion_classes:
|
| 240 |
+
count = self.labels.count(self.class_to_idx[emotion])
|
| 241 |
+
distribution[emotion] = count
|
| 242 |
+
return distribution
|
| 243 |
+
|
| 244 |
+
def get_class_weights(self) -> torch.Tensor:
|
| 245 |
+
"""Calculate class weights for imbalanced dataset"""
|
| 246 |
+
class_counts = np.bincount(self.labels)
|
| 247 |
+
total_samples = len(self.labels)
|
| 248 |
+
class_weights = total_samples / (len(self.emotion_classes) * class_counts)
|
| 249 |
+
return torch.FloatTensor(class_weights)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def get_rgb_transforms(image_size: int = 224, is_training: bool = True):
|
| 253 |
+
"""
|
| 254 |
+
Get RGB data transforms for training and validation
|
| 255 |
+
|
| 256 |
+
Args:
|
| 257 |
+
image_size: Target image size for ViT
|
| 258 |
+
is_training: Whether this is for training (applies augmentation)
|
| 259 |
+
"""
|
| 260 |
+
if is_training:
|
| 261 |
+
transform = transforms.Compose([
|
| 262 |
+
transforms.Resize((image_size, image_size)),
|
| 263 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
| 264 |
+
transforms.RandomRotation(degrees=15),
|
| 265 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
|
| 266 |
+
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1), scale=(0.9, 1.1)),
|
| 267 |
+
transforms.ToTensor(),
|
| 268 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 269 |
+
])
|
| 270 |
+
else:
|
| 271 |
+
transform = transforms.Compose([
|
| 272 |
+
transforms.Resize((image_size, image_size)),
|
| 273 |
+
transforms.ToTensor(),
|
| 274 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 275 |
+
])
|
| 276 |
+
|
| 277 |
+
return transform
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def get_thermal_transforms(image_size: int = 224, is_training: bool = True):
|
| 281 |
+
"""
|
| 282 |
+
Get Thermal data transforms for training and validation
|
| 283 |
+
Note: Thermal images are treated as grayscale converted to 3-channel
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
image_size: Target image size for ViT
|
| 287 |
+
is_training: Whether this is for training (applies augmentation)
|
| 288 |
+
"""
|
| 289 |
+
if is_training:
|
| 290 |
+
transform = transforms.Compose([
|
| 291 |
+
transforms.Resize((image_size, image_size)),
|
| 292 |
+
transforms.RandomHorizontalFlip(p=0.5),
|
| 293 |
+
transforms.RandomRotation(degrees=15),
|
| 294 |
+
# More conservative augmentation for thermal images
|
| 295 |
+
transforms.RandomAffine(degrees=0, translate=(0.05, 0.05), scale=(0.95, 1.05)),
|
| 296 |
+
transforms.ToTensor(),
|
| 297 |
+
# Use ImageNet normalization for consistency with pretrained ViT
|
| 298 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 299 |
+
])
|
| 300 |
+
else:
|
| 301 |
+
transform = transforms.Compose([
|
| 302 |
+
transforms.Resize((image_size, image_size)),
|
| 303 |
+
transforms.ToTensor(),
|
| 304 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 305 |
+
])
|
| 306 |
+
|
| 307 |
+
return transform
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def create_multimodal_data_loaders(
|
| 311 |
+
data_dir: str,
|
| 312 |
+
mode: str = 'rgb',
|
| 313 |
+
batch_size: int = 32,
|
| 314 |
+
image_size: int = 224,
|
| 315 |
+
num_workers: int = 4,
|
| 316 |
+
val_split: float = 0.2,
|
| 317 |
+
use_augmented: bool = False
|
| 318 |
+
) -> Tuple[DataLoader, DataLoader]:
|
| 319 |
+
"""
|
| 320 |
+
Create train and test data loaders for multimodal FER
|
| 321 |
+
|
| 322 |
+
Args:
|
| 323 |
+
data_dir: Path to the Data directory containing RGB/Thermal folders
|
| 324 |
+
mode: 'rgb', 'thermal', or 'combined'
|
| 325 |
+
batch_size: Batch size for training
|
| 326 |
+
image_size: Target image size for ViT
|
| 327 |
+
num_workers: Number of workers for data loading
|
| 328 |
+
val_split: Fraction of data to use for validation (applied to train split)
|
| 329 |
+
use_augmented: Whether to include augmented data
|
| 330 |
+
|
| 331 |
+
Returns:
|
| 332 |
+
train_loader, test_loader
|
| 333 |
+
"""
|
| 334 |
+
# Create transforms
|
| 335 |
+
rgb_train_transform = get_rgb_transforms(image_size, is_training=True)
|
| 336 |
+
rgb_test_transform = get_rgb_transforms(image_size, is_training=False)
|
| 337 |
+
thermal_train_transform = get_thermal_transforms(image_size, is_training=True)
|
| 338 |
+
thermal_test_transform = get_thermal_transforms(image_size, is_training=False)
|
| 339 |
+
|
| 340 |
+
# Calculate split ratio for train vs test
|
| 341 |
+
train_split_ratio = 1.0 - val_split
|
| 342 |
+
|
| 343 |
+
# Create datasets
|
| 344 |
+
train_dataset = MultiModalFERDataset(
|
| 345 |
+
data_dir=data_dir,
|
| 346 |
+
mode=mode,
|
| 347 |
+
split_ratio=train_split_ratio,
|
| 348 |
+
split_type='train',
|
| 349 |
+
transform_rgb=rgb_train_transform,
|
| 350 |
+
transform_thermal=thermal_train_transform,
|
| 351 |
+
use_augmented=use_augmented
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
test_dataset = MultiModalFERDataset(
|
| 355 |
+
data_dir=data_dir,
|
| 356 |
+
mode=mode,
|
| 357 |
+
split_ratio=train_split_ratio,
|
| 358 |
+
split_type='test',
|
| 359 |
+
transform_rgb=rgb_test_transform,
|
| 360 |
+
transform_thermal=thermal_test_transform,
|
| 361 |
+
use_augmented=use_augmented
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
# Create data loaders
|
| 365 |
+
train_loader = DataLoader(
|
| 366 |
+
train_dataset,
|
| 367 |
+
batch_size=batch_size,
|
| 368 |
+
shuffle=True,
|
| 369 |
+
num_workers=num_workers,
|
| 370 |
+
pin_memory=True,
|
| 371 |
+
drop_last=True
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
test_loader = DataLoader(
|
| 375 |
+
test_dataset,
|
| 376 |
+
batch_size=batch_size,
|
| 377 |
+
shuffle=False,
|
| 378 |
+
num_workers=num_workers,
|
| 379 |
+
pin_memory=True
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
return train_loader, test_loader
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def analyze_multimodal_dataset(data_dir: str, use_augmented: bool = False):
|
| 386 |
+
"""Analyze the multimodal dataset and print statistics"""
|
| 387 |
+
print("=== Multimodal Dataset Analysis ===")
|
| 388 |
+
|
| 389 |
+
# Analyze different modes and splits
|
| 390 |
+
for mode in ['rgb', 'thermal', 'combined']:
|
| 391 |
+
print(f"\n=== {mode.upper()} Mode ===")
|
| 392 |
+
|
| 393 |
+
for split in ['train', 'test']:
|
| 394 |
+
print(f"\n{split.upper()} Split:")
|
| 395 |
+
|
| 396 |
+
try:
|
| 397 |
+
dataset = MultiModalFERDataset(
|
| 398 |
+
data_dir=data_dir,
|
| 399 |
+
mode=mode,
|
| 400 |
+
split_ratio=0.8,
|
| 401 |
+
split_type=split,
|
| 402 |
+
use_augmented=use_augmented
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
print(f"Total samples: {len(dataset)}")
|
| 406 |
+
|
| 407 |
+
# Class distribution
|
| 408 |
+
distribution = dataset.get_class_distribution()
|
| 409 |
+
print("Class distribution:")
|
| 410 |
+
for emotion, count in distribution.items():
|
| 411 |
+
if len(dataset) > 0:
|
| 412 |
+
percentage = (count / len(dataset)) * 100
|
| 413 |
+
print(f" {emotion}: {count} ({percentage:.1f}%)")
|
| 414 |
+
|
| 415 |
+
# Class weights
|
| 416 |
+
if len(dataset) > 0:
|
| 417 |
+
weights = dataset.get_class_weights()
|
| 418 |
+
print("Class weights:")
|
| 419 |
+
for i, (emotion, weight) in enumerate(zip(dataset.emotion_classes, weights)):
|
| 420 |
+
print(f" {emotion}: {weight:.3f}")
|
| 421 |
+
|
| 422 |
+
except Exception as e:
|
| 423 |
+
print(f"Error loading {mode} {split} dataset: {e}")
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
if __name__ == "__main__":
|
| 427 |
+
# Example usage
|
| 428 |
+
data_dir = "../vit/vit/data/vit/Data"
|
| 429 |
+
|
| 430 |
+
# Analyze dataset
|
| 431 |
+
analyze_multimodal_dataset(data_dir, use_augmented=True)
|
| 432 |
+
|
| 433 |
+
# Test different modes
|
| 434 |
+
for mode in ['rgb', 'thermal', 'combined']:
|
| 435 |
+
print(f"\n=== Testing {mode.upper()} Mode ===")
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
# Create data loaders
|
| 439 |
+
train_loader, test_loader = create_multimodal_data_loaders(
|
| 440 |
+
data_dir, mode=mode, batch_size=8, image_size=224, use_augmented=True
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
print(f"Data loaders created:")
|
| 444 |
+
print(f"Train batches: {len(train_loader)}")
|
| 445 |
+
print(f"Test batches: {len(test_loader)}")
|
| 446 |
+
|
| 447 |
+
# Test loading a batch
|
| 448 |
+
if len(train_loader) > 0:
|
| 449 |
+
batch = next(iter(train_loader))
|
| 450 |
+
if mode == 'combined':
|
| 451 |
+
data, labels = batch
|
| 452 |
+
rgb_images = data['rgb']
|
| 453 |
+
thermal_images = data['thermal']
|
| 454 |
+
print(f"RGB batch shape: {rgb_images.shape}")
|
| 455 |
+
print(f"Thermal batch shape: {thermal_images.shape}")
|
| 456 |
+
print(f"Labels shape: {labels.shape}")
|
| 457 |
+
else:
|
| 458 |
+
images, labels = batch
|
| 459 |
+
print(f"Batch shape: {images.shape}")
|
| 460 |
+
print(f"Labels shape: {labels.shape}")
|
| 461 |
+
else:
|
| 462 |
+
print("No data available for this mode")
|
| 463 |
+
|
| 464 |
+
except Exception as e:
|
| 465 |
+
print(f"Error testing {mode} mode: {e}")
|