Spaces:
Runtime error
Runtime error
# --- | |
# jupyter: | |
# jupytext: | |
# formats: ipynb,py:percent | |
# text_representation: | |
# extension: .py | |
# format_name: percent | |
# format_version: '1.3' | |
# jupytext_version: 1.16.2 | |
# kernelspec: | |
# display_name: temps | |
# language: python | |
# name: temps | |
# --- | |
# %% [markdown] | |
# # FIGURE METRICS | |
# %% [markdown] | |
# ## METRICS FOR THE DIFFERENT METHODS ON THE WIDE FIELD SAMPLE | |
# %% [markdown] | |
# ### LOAD PYTHON MODULES | |
# %% | |
# %load_ext autoreload | |
# %autoreload 2 | |
# %% | |
import pandas as pd | |
import numpy as np | |
import os | |
from astropy.io import fits | |
from astropy.table import Table | |
import torch | |
from pathlib import Path | |
# %% | |
#matplotlib settings | |
from matplotlib import rcParams | |
import matplotlib.pyplot as plt | |
rcParams["mathtext.fontset"] = "stix" | |
rcParams["font.family"] = "STIXGeneral" | |
# %% | |
import temps | |
# %% | |
from temps.archive import Archive | |
from temps.utils import nmad | |
from temps.temps_arch import EncoderPhotometry, MeasureZ | |
from temps.temps import TempsModule | |
from temps.plots import plot_photoz | |
# %% | |
eval_methods=True | |
# %% [markdown] | |
# ### LOAD DATA | |
# %% | |
#define here the directory containing the photometric catalogues | |
parent_dir = Path('/data/astro/scratch/lcabayol/insight/data/Euclid_EXT_MER_PHZ_DC2_v1.5') | |
modules_dir = Path('../data/models/') | |
filename_calib = 'euclid_cosmos_DC2_S1_v2.1_calib_clean.fits' | |
filename_valid = 'euclid_cosmos_DC2_S1_v2.1_valid_matched.fits' | |
# %% | |
path_file = parent_dir / filename_valid # Creating the path to the file | |
hdu_list = fits.open(path_file) | |
cat = Table(hdu_list[1].data).to_pandas() | |
cat = cat[cat['FLAG_PHOT']==0] | |
cat = cat[cat['mu_class_L07']==1] | |
cat = cat[(cat['z_spec_S15'] > 0) | (cat['photo_z_L15'] > 0)] | |
cat = cat[cat['MAG_VIS']<25] | |
# %% | |
ztarget = [cat['z_spec_S15'].values[ii] if cat['z_spec_S15'].values[ii]> 0 else cat['photo_z_L15'].values[ii] for ii in range(len(cat))] | |
specz_or_photo = [0 if cat['z_spec_S15'].values[ii]> 0 else 1 for ii in range(len(cat))] | |
ID = cat['ID'] | |
VISmag = cat['MAG_VIS'] | |
zsflag = cat['reliable_S15'] | |
# %% | |
photoz_archive = Archive(path_calib = parent_dir/filename_calib, | |
path_valid = parent_dir/filename_valid, | |
only_zspec=False) | |
f = photoz_archive._extract_fluxes(catalogue= cat) | |
col = photoz_archive._to_colors(f) | |
# %% [markdown] | |
# ### EVALUATE USING TRAINED MODELS | |
# %% | |
if eval_methods: | |
dfs = {} | |
for il, lab in enumerate(['z','L15','DA']): | |
nn_features = EncoderPhotometry() | |
nn_features.load_state_dict(torch.load(modules_dir / f'modelF_{lab}.pt',map_location=torch.device('cpu'))) | |
nn_z = MeasureZ(num_gauss=6) | |
nn_z.load_state_dict(torch.load(modules_dir / f'modelZ_{lab}.pt',map_location=torch.device('cpu'))) | |
temps_module = TempsModule(nn_features, nn_z) | |
z, pz, odds = temps_module.get_pz(input_data=torch.Tensor(col), | |
return_pz=True, | |
return_flag=True) | |
# Create a DataFrame with the desired columns | |
df = pd.DataFrame(np.c_[ID, VISmag,z, odds, ztarget,zsflag, specz_or_photo], | |
columns=['ID','VISmag','z','odds', 'ztarget','zsflag','S15_L15_flag']) | |
# Calculate additional columns or operations if needed | |
df['zwerr'] = (df.z - df.ztarget) / (1 + df.ztarget) | |
# Drop any rows with NaN values | |
df = df.dropna() | |
# Assign the DataFrame to a key in the dictionary | |
dfs[lab] = df | |
# %% | |
dfs['z']['zwerr'] = (dfs['z'].z - dfs['z'].ztarget) / (1 + dfs['z'].ztarget) | |
dfs['L15']['zwerr'] = (dfs['L15'].z - dfs['L15'].ztarget) / (1 + dfs['L15'].ztarget) | |
dfs['DA']['zwerr'] = (dfs['DA'].z - dfs['DA'].ztarget) / (1 + dfs['DA'].ztarget) | |
# %% [markdown] | |
# ### LOAD CATALOGUES FROM PREVIOUS TRAINING | |
# %% | |
if not eval_methods: | |
dfs = {} | |
dfs['z'] = pd.read_csv(parent_dir / 'predictions_specztraining.csv', header=0) | |
dfs['L15'] = pd.read_csv(parent_dir / 'predictions_speczL15training.csv', header=0) | |
dfs['DA'] = pd.read_csv(parent_dir / 'predictions_speczDAtraining.csv', header=0) | |
# %% [markdown] | |
# ### MAKE PLOT | |
# %% | |
df_list = [dfs['z'], dfs['L15'], dfs['DA']] | |
# %% | |
plot_photoz(df_list, | |
nbins=8, | |
xvariable='VISmag', | |
metric='nmad', | |
type_bin='bin', | |
label_list = ['zs','zs+L15',r'TEMPS'], | |
save=False, | |
samp='L15' | |
) | |
# %% | |