Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +3 -3
src/streamlit_app.py
CHANGED
|
@@ -50,7 +50,7 @@ st.markdown(
|
|
| 50 |
@st.cache_data
|
| 51 |
def load_data(path):
|
| 52 |
df = pd.read_json(path, lines=True)
|
| 53 |
-
score_cols = [f"T{i}" for i in range(1,
|
| 54 |
df["Avg"] = df[score_cols].mean(axis=1).round(1)
|
| 55 |
# df["Avg"] = np.ceil(df[score_cols].mean(axis=1) * 10) / 10
|
| 56 |
# Compute rank per column (1 = best)
|
|
@@ -69,7 +69,7 @@ if selected_tier == 'F1':
|
|
| 69 |
df = load_data("src/models.json")
|
| 70 |
|
| 71 |
# Precompute max ranks for color scaling
|
| 72 |
-
score_cols = [f"T{i}" for i in range(1,
|
| 73 |
max_ranks = {col: df[f"{col}_rank"].max() for col in score_cols}
|
| 74 |
|
| 75 |
# Build raw HTML table
|
|
@@ -104,7 +104,7 @@ else:
|
|
| 104 |
df2 = load_data("src/model_acc.json")
|
| 105 |
|
| 106 |
# Precompute max ranks for color scaling
|
| 107 |
-
score_cols = [f"T{i}" for i in range(1,
|
| 108 |
max_ranks = {col: df2[f"{col}_rank"].max() for col in score_cols}
|
| 109 |
|
| 110 |
# Build raw HTML table
|
|
|
|
| 50 |
@st.cache_data
|
| 51 |
def load_data(path):
|
| 52 |
df = pd.read_json(path, lines=True)
|
| 53 |
+
score_cols = [f"T{i}" for i in range(1, 12)]
|
| 54 |
df["Avg"] = df[score_cols].mean(axis=1).round(1)
|
| 55 |
# df["Avg"] = np.ceil(df[score_cols].mean(axis=1) * 10) / 10
|
| 56 |
# Compute rank per column (1 = best)
|
|
|
|
| 69 |
df = load_data("src/models.json")
|
| 70 |
|
| 71 |
# Precompute max ranks for color scaling
|
| 72 |
+
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
| 73 |
max_ranks = {col: df[f"{col}_rank"].max() for col in score_cols}
|
| 74 |
|
| 75 |
# Build raw HTML table
|
|
|
|
| 104 |
df2 = load_data("src/model_acc.json")
|
| 105 |
|
| 106 |
# Precompute max ranks for color scaling
|
| 107 |
+
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
| 108 |
max_ranks = {col: df2[f"{col}_rank"].max() for col in score_cols}
|
| 109 |
|
| 110 |
# Build raw HTML table
|