SRT-to-Audio / app.py
latuan's picture
ver 1.4
fd0629f
raw
history blame
8.35 kB
import os
import re
import io
import torch
import requests
import torchaudio
import numpy as np
import gradio as gr
from uroman import uroman
import concurrent.futures
from pydub import AudioSegment
from datasets import load_dataset
from IPython.display import Audio
from scipy.signal import butter, lfilter
from speechbrain.pretrained import EncoderClassifier
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
# Variables
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
dataset_name = "truong-xuan-linh/vi-xvector-speechbrain"
cache_dir="temp/"
default_model_name = "truong-xuan-linh/speecht5-vietnamese-voiceclone-lsvsc"
speaker_id = "speech_dataset_denoised"
# Active device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models and datasets
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
dataset = load_dataset(
dataset_name,
download_mode="force_redownload",
verification_mode="no_checks",
cache_dir=cache_dir,
revision="5ea5e4345258333cbc6d1dd2544f6c658e66a634"
)
dataset = dataset["train"].to_list()
dataset_dict = {}
for rc in dataset:
dataset_dict[rc["speaker_id"]] = rc["embedding"]
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Model utility functions
def remove_special_characters(sentence):
# Use regular expression to keep only letters, periods, and commas
sentence_after_removal = re.sub(r'[^a-zA-Z\s,.\u00C0-\u1EF9]', ' ,', sentence)
return sentence_after_removal
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(waveform)
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=-1)
return speaker_embeddings
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y
def korean_splitter(string):
pattern = re.compile('[가-힣]+')
matches = pattern.findall(string)
return matches
def uroman_normalization(string):
korean_inputs = korean_splitter(string)
for korean_input in korean_inputs:
korean_roman = uroman(korean_input)
string = string.replace(korean_input, korean_roman)
return string
# Model class
class Model():
def __init__(self, model_name, speaker_url=""):
self.model_name = model_name
self.processor = SpeechT5Processor.from_pretrained(model_name)
self.model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
self.model.eval()
self.speaker_url = speaker_url
if speaker_url:
print(f"download speaker_url")
response = requests.get(speaker_url)
audio_stream = io.BytesIO(response.content)
audio_segment = AudioSegment.from_file(audio_stream, format="wav")
audio_segment = audio_segment.set_channels(1)
audio_segment = audio_segment.set_frame_rate(16000)
audio_segment = audio_segment.set_sample_width(2)
wavform, _ = torchaudio.load(audio_segment.export())
self.speaker_embeddings = create_speaker_embedding(wavform)[0]
else:
self.speaker_embeddings = None
if model_name == "truong-xuan-linh/speecht5-vietnamese-commonvoice" or model_name == "truong-xuan-linh/speecht5-irmvivoice":
self.speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
def inference(self, text, speaker_id=None):
if "voiceclone" in self.model_name:
if not self.speaker_url:
self.speaker_embeddings = torch.tensor(dataset_dict[speaker_id])
with torch.no_grad():
full_speech = []
separators = r";|\.|!|\?|\n"
text = uroman_normalization(text)
text = remove_special_characters(text)
text = text.replace(" ", "▁")
split_texts = re.split(separators, text)
for split_text in split_texts:
if split_text != "▁":
split_text = split_text.lower() + "▁"
print(split_text)
inputs = self.processor.tokenizer(text=split_text, return_tensors="pt")
speech = self.model.generate_speech(inputs["input_ids"], threshold=0.5, speaker_embeddings=self.speaker_embeddings, vocoder=vocoder)
full_speech.append(speech.numpy())
return np.concatenate(full_speech)
@staticmethod
def moving_average(data, window_size):
return np.convolve(data, np.ones(window_size)/window_size, mode='same')
# Initialize model
model = Model(
model_name=default_model_name,
speaker_url=""
)
# Audio processing functions
def read_srt(file_path):
subtitles = []
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
for i in range(0, len(lines), 4):
if i+2 < len(lines):
start_time, end_time = lines[i+1].strip().split('-->')
start_time = start_time.strip()
end_time = end_time.strip()
text = lines[i+2].strip()
subtitles.append((start_time, end_time, text))
return subtitles
def is_valid_srt(file_path):
try:
read_srt(file_path)
return True
except:
return False
def time_to_seconds(time_str):
h, m, s = time_str.split(':')
seconds = int(h) * 3600 + int(m) * 60 + float(s.replace(',', '.'))
return seconds
def generate_audio_with_pause(srt_file_path):
subtitles = read_srt(srt_file_path)
audio_clips = []
for i, (start_time, end_time, text) in enumerate(subtitles):
audio_data = model.inference(text=text, speaker_id=speaker_id)
audio_data = audio_data / np.max(np.abs(audio_data))
audio_clips.append(audio_data)
if i < len(subtitles) - 1:
next_start_time = subtitles[i + 1][0]
pause_duration = time_to_seconds(next_start_time) - time_to_seconds(end_time)
if pause_duration > 0:
pause_samples = int(pause_duration * 16000)
audio_clips.append(np.zeros(pause_samples))
final_audio = np.concatenate(audio_clips)
return final_audio
def srt_to_audio_multi(srt_files):
output_paths = []
invalid_files = []
def process_file(srt_file):
if not is_valid_srt(srt_file.name):
invalid_files.append(srt_file.name)
return None
audio_data = generate_audio_with_pause(srt_file.name)
output_path = os.path.join(cache_dir, f'output_{os.path.basename(srt_file.name)}.wav')
torchaudio.save(output_path, torch.tensor(audio_data).unsqueeze(0), 16000)
return output_path
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process_file, srt_file) for srt_file in srt_files]
for future in concurrent.futures.as_completed(futures):
result = future.result()
if result:
output_paths.append(result)
if invalid_files:
raise ValueError(f"Invalid SRT files: {', '.join(invalid_files)}")
return output_paths
# Initialize model
model = Model(
model_name=default_model_name,
speaker_url=""
)
# UI display
css = '''
#title{text-align: center}
#container{display: flex; justify-content: space-between; align-items: center;}
'''
with gr.Blocks(css=css) as demo:
title = gr.HTML(
"""<h1>SRT to Audio Tool</h1>""",
elem_id="title",
)
with gr.Row(elem_id="container"):
inp = gr.File(label="Upload SRT files", file_count="multiple", type="filepath")
out = gr.File(label="Generated Audio Files", file_count="multiple", type="filepath")
btn = gr.Button("Generate")
btn.click(fn=srt_to_audio_multi, inputs=inp, outputs=out)
if __name__ == "__main__":
demo.launch()