latif98's picture
Update app.py
0e841d6 verified
raw
history blame
2.64 kB
import os
import gradio as gr
import pytorchvideo
import torch
import torchvision
import numpy as np
import accelerate
import evaluate
from transformers import TrainingArguments, Trainer
from transformers import VideoMAEImageProcessor, VideoMAEForVideoClassification
from torchvision.transforms import Compose
from pytorchvideo.data.labeled_video_dataset import LabeledVideoDataset
from pytorchvideo.transforms import (
ApplyTransformToKey,
Normalize,
RandomShortSideScale,
RemoveKey,
ShortSideScale,
UniformTemporalSubsample,
)
from torchvision.transforms import (
Compose,
Lambda,
Resize,
)
def preprocess_video(video_path, image_processor, model_config):
mean = image_processor.image_mean
std = image_processor.image_std
if "shortest_edge" in image_processor.size:
height = width = image_processor.size["shortest_edge"]
else:
height = image_processor.size["height"]
width = image_processor.size["width"]
resize_to = (height, width)
num_frames_to_sample = model_config.num_frames
transform = Compose(
[
UniformTemporalSubsample(num_frames_to_sample),
Lambda(lambda x: x / 255.0),
Normalize(mean, std),
Resize(resize_to),
]
)
video = pytorchvideo.data.encoded_video.EncodedVideo.from_path(video_path)
video_tensor = transform(video)
return video_tensor
def run_inference(model, video):
"""Utility to run inference given a model and test video.
The video is assumed to be preprocessed already.
"""
# (num_frames, num_channels, height, width)
perumuted_sample_test_video = video.permute(1, 0, 2, 3)
inputs = {
"pixel_values": perumuted_sample_test_video.unsqueeze(0),
"labels": torch.tensor([int(sample_test_video["label"])]), # this can be skipped if you don't have labels available.
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = {k: v.to(device) for k, v in inputs.items()}
model = model.to(device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
return logits
model_name = "latif98/videomae-base-finetuned-isl-numbers_aug"
image_processor = VideoMAEImageProcessor.from_pretrained(model_name)
model = VideoMAEForVideoClassification.from_pretrained(model_name)
def video_identity(video):
return video
demo = gr.Interface(video_identity,
gr.Video(),
"playable_video",
)
if __name__ == "__main__":
demo.launch()