Spaces:
Sleeping
Sleeping
import nltk | |
from nltk.corpus import stopwords | |
import spacy | |
import string | |
import re | |
nltk.download('stopwords') | |
# Get the list of English stop words from NLTK | |
nltk_stop_words = stopwords.words('english') | |
# Load the spaCy model for English | |
nlp = spacy.load("en_core_web_sm") | |
def process_text(text): | |
""" | |
Process text by: | |
1. Lowercasing | |
2. Removing punctuation and non-alphanumeric characters | |
3. Removing stop words | |
4. Lemmatization | |
""" | |
# Step 1: Tokenization & Processing with spaCy | |
doc = nlp(text.lower()) # Process text with spaCy | |
# Step 2: Filter out stop words, non-alphanumeric characters, punctuation, and apply lemmatization | |
processed_tokens = [ | |
re.sub(r'[^a-zA-Z0-9]', '', token.lemma_) # Remove non-alphanumeric characters | |
for token in doc | |
if token.text not in nltk_stop_words and token.text not in string.punctuation | |
] | |
# Optional: Filter out empty strings resulting from the regex replacement | |
processed_tokens = " ".join([word for word in processed_tokens if word]) | |
return processed_tokens |