larry1129 commited on
Commit
ee7c5db
·
verified ·
1 Parent(s): cc2f16e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -49
app.py CHANGED
@@ -1,63 +1,77 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
  """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
 
 
 
44
  """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
 
 
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ # 定义模型名称(替换为您上传的模型名称)
6
+ model_name = "larry1129/WooWoof_AI" # 替换为您的模型名称
 
 
7
 
8
+ # 加载分词器
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
 
11
+ # 加载模型
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ model_name,
14
+ device_map="auto",
15
+ torch_dtype=torch.float16,
16
+ trust_remote_code=True # 如果你的模型使用自定义代码,请保留此参数
17
+ )
 
 
 
 
 
 
 
 
18
 
19
+ # 设置 pad_token
20
+ tokenizer.pad_token = tokenizer.eos_token
21
+ model.config.pad_token_id = tokenizer.pad_token_id
22
 
23
+ # 切换到评估模式
24
+ model.eval()
25
 
26
+ # 定义提示生成函数
27
+ def generate_prompt(instruction, input_text=""):
28
+ if input_text:
29
+ prompt = f"""### Instruction:
30
+ {instruction}
 
 
 
31
 
32
+ ### Input:
33
+ {input_text}
34
 
35
+ ### Response:
36
  """
37
+ else:
38
+ prompt = f"""### Instruction:
39
+ {instruction}
40
+
41
+ ### Response:
42
  """
43
+ return prompt
44
+
45
+ # 定义生成响应的函数
46
+ def generate_response(instruction, input_text):
47
+ prompt = generate_prompt(instruction, input_text)
48
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
49
+
50
+ with torch.no_grad():
51
+ outputs = model.generate(
52
+ input_ids=inputs["input_ids"],
53
+ attention_mask=inputs["attention_mask"],
54
+ max_new_tokens=128,
55
+ temperature=0.7,
56
+ top_p=0.95,
57
+ do_sample=True,
58
+ )
59
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
60
+ response = response.split("### Response:")[-1].strip()
61
+ return response
62
+
63
+ # 创建 Gradio 接口
64
+ iface = gr.Interface(
65
+ fn=generate_response,
66
+ inputs=[
67
+ gr.inputs.Textbox(lines=2, placeholder="请输入指令...", label="Instruction"),
68
+ gr.inputs.Textbox(lines=2, placeholder="如果有额外输入,请在此填写...", label="Input (可选)")
69
  ],
70
+ outputs="text",
71
+ title="WooWoof AI 交互式聊天",
72
+ description="基于 LLAMA 3.1 的大语言模型,支持指令和可选输入。",
73
+ allow_flagging="never"
74
  )
75
 
76
+ # 启动 Gradio 接口
77
+ iface.launch()