Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
import os
|
6 |
-
|
7 |
-
|
8 |
-
# 打印已安装的包版本以进行调试
|
9 |
-
import transformers
|
10 |
-
import bitsandbytes
|
11 |
-
import accelerate
|
12 |
-
|
13 |
-
print(f"transformers version: {transformers.__version__}")
|
14 |
-
print(f"bitsandbytes version: {bitsandbytes.__version__}")
|
15 |
-
print(f"accelerate version: {accelerate.__version__}")
|
16 |
|
17 |
# 获取 Hugging Face 访问令牌
|
18 |
hf_token = os.getenv("HF_API_TOKEN")
|
@@ -23,56 +14,65 @@ base_model_name = "larry1129/meta-llama-3.1-8b-bnb-4bit" # 替换为你的基
|
|
23 |
# 定义 adapter 模型名称
|
24 |
adapter_model_name = "larry1129/WooWoof_AI" # 替换为你的 adapter 模型名称
|
25 |
|
26 |
-
#
|
27 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
base_model_name,
|
32 |
-
device_map="auto",
|
33 |
-
torch_dtype=torch.float16,
|
34 |
-
use_auth_token=hf_token,
|
35 |
-
trust_remote_code=True # 如果你的模型使用自定义代码,请保留此参数
|
36 |
-
)
|
37 |
-
|
38 |
-
# 加载 adapter 并将其应用到基础模型上
|
39 |
-
model = PeftModel.from_pretrained(
|
40 |
-
base_model,
|
41 |
-
adapter_model_name,
|
42 |
-
device_map="auto",
|
43 |
-
torch_dtype=torch.float16,
|
44 |
-
use_auth_token=hf_token,
|
45 |
-
trust_remote_code=True
|
46 |
-
)
|
47 |
-
|
48 |
-
# 设置 pad_token
|
49 |
-
tokenizer.pad_token = tokenizer.eos_token
|
50 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
51 |
-
|
52 |
-
# 切换到评估模式
|
53 |
-
model.eval()
|
54 |
|
55 |
# 定义提示生成函数
|
56 |
def generate_prompt(instruction, input_text=""):
|
57 |
if input_text:
|
58 |
prompt = f"""### Instruction:
|
59 |
{instruction}
|
60 |
-
|
61 |
### Input:
|
62 |
{input_text}
|
63 |
-
|
64 |
### Response:
|
65 |
"""
|
66 |
else:
|
67 |
prompt = f"""### Instruction:
|
68 |
{instruction}
|
69 |
-
|
70 |
### Response:
|
71 |
"""
|
72 |
return prompt
|
73 |
|
74 |
-
#
|
|
|
75 |
def generate_response(instruction, input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
prompt = generate_prompt(instruction, input_text)
|
77 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
78 |
|
@@ -104,5 +104,3 @@ iface = gr.Interface(
|
|
104 |
|
105 |
# 启动 Gradio 接口
|
106 |
iface.launch()
|
107 |
-
|
108 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
import os
|
6 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# 获取 Hugging Face 访问令牌
|
9 |
hf_token = os.getenv("HF_API_TOKEN")
|
|
|
14 |
# 定义 adapter 模型名称
|
15 |
adapter_model_name = "larry1129/WooWoof_AI" # 替换为你的 adapter 模型名称
|
16 |
|
17 |
+
# 加载分词器(无需 GPU,可在全局加载)
|
18 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=hf_token)
|
19 |
|
20 |
+
# 定义一个全局变量用于缓存模型
|
21 |
+
model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# 定义提示生成函数
|
24 |
def generate_prompt(instruction, input_text=""):
|
25 |
if input_text:
|
26 |
prompt = f"""### Instruction:
|
27 |
{instruction}
|
|
|
28 |
### Input:
|
29 |
{input_text}
|
|
|
30 |
### Response:
|
31 |
"""
|
32 |
else:
|
33 |
prompt = f"""### Instruction:
|
34 |
{instruction}
|
|
|
35 |
### Response:
|
36 |
"""
|
37 |
return prompt
|
38 |
|
39 |
+
# 定义生成响应的函数,并使用 @spaces.GPU 装饰
|
40 |
+
@spaces.GPU
|
41 |
def generate_response(instruction, input_text):
|
42 |
+
global model
|
43 |
+
|
44 |
+
if model is None:
|
45 |
+
# 在函数内部导入需要 GPU 的库
|
46 |
+
import bitsandbytes
|
47 |
+
from transformers import AutoModelForCausalLM
|
48 |
+
|
49 |
+
# 加载基础模型
|
50 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
base_model_name,
|
52 |
+
device_map="auto",
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
use_auth_token=hf_token,
|
55 |
+
trust_remote_code=True # 如果你的模型使用自定义代码,请保留此参数
|
56 |
+
)
|
57 |
+
|
58 |
+
# 加载 adapter 并将其应用到基础模型上
|
59 |
+
model = PeftModel.from_pretrained(
|
60 |
+
base_model,
|
61 |
+
adapter_model_name,
|
62 |
+
device_map="auto",
|
63 |
+
torch_dtype=torch.float16,
|
64 |
+
use_auth_token=hf_token,
|
65 |
+
trust_remote_code=True
|
66 |
+
)
|
67 |
+
|
68 |
+
# 设置 pad_token
|
69 |
+
tokenizer.pad_token = tokenizer.eos_token
|
70 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
71 |
+
|
72 |
+
# 切换到评估模式
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
# 生成提示
|
76 |
prompt = generate_prompt(instruction, input_text)
|
77 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
78 |
|
|
|
104 |
|
105 |
# 启动 Gradio 接口
|
106 |
iface.launch()
|
|
|
|