Spaces:
Runtime error
Runtime error
Created first Gradio Space (MVP)
Browse files- .gitattributes +1 -0
- .gitignore +6 -0
- README.md +9 -5
- app.py +142 -0
- config.yaml +26 -0
- data/vdb/index.faiss +3 -0
- data/vdb/index.pkl +3 -0
- requirements.txt +9 -0
- src/tools.py +123 -0
- src/vectorstore.py +83 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.faiss filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv/
|
| 2 |
+
.env
|
| 3 |
+
__pycache__
|
| 4 |
+
.qodo
|
| 5 |
+
.DS_Store
|
| 6 |
+
*nogit*
|
README.md
CHANGED
|
@@ -1,12 +1,16 @@
|
|
| 1 |
---
|
| 2 |
title: Aina RAG
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Aina RAG
|
| 3 |
+
emoji: 🐡
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.28.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Conversational space enhanced for Aina Challenge
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Aina Challenge
|
| 15 |
+
|
| 16 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from gradio import ChatMessage
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
from openai import OpenAI
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
|
| 13 |
+
from termcolor import cprint
|
| 14 |
+
import logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO, format='[%(asctime)s][%(name)s][%(levelname)s] - %(message)s')
|
| 16 |
+
log = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
from omegaconf import OmegaConf
|
| 21 |
+
from src.tools import tools, oitools
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Load the configuration file
|
| 25 |
+
# ===========================================================================
|
| 26 |
+
# Environment variables
|
| 27 |
+
load_dotenv(".env", override=True)
|
| 28 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 29 |
+
LLM_BASE_URL = os.environ.get("LLM_BASE_URL")
|
| 30 |
+
|
| 31 |
+
log.info(f"Using HF_TOKEN: {HF_TOKEN[:4]}...{HF_TOKEN[-4:]}")
|
| 32 |
+
log.info(f"Using LLM_BASE_URL: {LLM_BASE_URL[:10]}...{LLM_BASE_URL[-10:]}")
|
| 33 |
+
|
| 34 |
+
# Configuration file
|
| 35 |
+
config_file = "config.yaml"
|
| 36 |
+
cfg = OmegaConf.load(config_file)
|
| 37 |
+
|
| 38 |
+
# OpenAI API parameters
|
| 39 |
+
chat_params = cfg.openai.chat_params
|
| 40 |
+
client = OpenAI(
|
| 41 |
+
base_url=f"{LLM_BASE_URL}",
|
| 42 |
+
api_key=HF_TOKEN
|
| 43 |
+
)
|
| 44 |
+
logging.info(f"Client initialized: {client}")
|
| 45 |
+
# ===========================================================================
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def today_date():
|
| 49 |
+
return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def clean_json_string(json_str):
|
| 53 |
+
return re.sub(r'[ ,}\s]+$', '', json_str) + '}'
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def completion(history, model, system_prompt: str, tools=None, chat_params=chat_params):
|
| 57 |
+
messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
|
| 58 |
+
for msg in history:
|
| 59 |
+
if isinstance(msg, dict):
|
| 60 |
+
msg = ChatMessage(**msg)
|
| 61 |
+
if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:
|
| 62 |
+
tools_calls = json.loads(msg.metadata.get("title", "[]"))
|
| 63 |
+
messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
|
| 64 |
+
messages.append({"role": "tool", "content": msg.content})
|
| 65 |
+
else:
|
| 66 |
+
messages.append({"role": msg.role, "content": msg.content})
|
| 67 |
+
|
| 68 |
+
request_params = {
|
| 69 |
+
"model": model,
|
| 70 |
+
"messages": messages,
|
| 71 |
+
**chat_params
|
| 72 |
+
}
|
| 73 |
+
if tools:
|
| 74 |
+
request_params.update({"tool_choice": "auto", "tools": tools})
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
return client.chat.completions.create(**request_params)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def llm_in_loop(history, system_prompt, recursive):
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
models = client.models.list()
|
| 84 |
+
model = models.data[0].id
|
| 85 |
+
except Exception as err:
|
| 86 |
+
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
|
| 87 |
+
raise err
|
| 88 |
+
|
| 89 |
+
arguments = ""
|
| 90 |
+
name = ""
|
| 91 |
+
chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)
|
| 92 |
+
appended = False
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
for chunk in chat_completion:
|
| 96 |
+
if chunk.choices and chunk.choices[0].delta.tool_calls:
|
| 97 |
+
call = chunk.choices[0].delta.tool_calls[0]
|
| 98 |
+
if hasattr(call.function, "name") and call.function.name:
|
| 99 |
+
name = call.function.name
|
| 100 |
+
if hasattr(call.function, "arguments") and call.function.arguments:
|
| 101 |
+
arguments += call.function.arguments
|
| 102 |
+
|
| 103 |
+
elif chunk.choices[0].delta.content:
|
| 104 |
+
if not appended:
|
| 105 |
+
history.append(ChatMessage(role="assistant", content=""))
|
| 106 |
+
appended = True
|
| 107 |
+
history[-1].content += chunk.choices[0].delta.content
|
| 108 |
+
yield history[recursive:]
|
| 109 |
+
|
| 110 |
+
arguments = clean_json_string(arguments) if arguments else "{}"
|
| 111 |
+
arguments = json.loads(arguments)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
if appended:
|
| 115 |
+
recursive -= 1
|
| 116 |
+
if name:
|
| 117 |
+
try:
|
| 118 |
+
result = str(tools[name].invoke(input=arguments))
|
| 119 |
+
|
| 120 |
+
except Exception as err:
|
| 121 |
+
result = f"💥 Error: {err}"
|
| 122 |
+
|
| 123 |
+
history.append(ChatMessage(
|
| 124 |
+
role="assistant",
|
| 125 |
+
content=result,
|
| 126 |
+
metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)}))
|
| 127 |
+
|
| 128 |
+
yield history[recursive:]
|
| 129 |
+
yield from llm_in_loop(history, system_prompt, recursive - 1)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def respond(message, history, additional_inputs):
|
| 133 |
+
history.append(ChatMessage(role="user", content=message))
|
| 134 |
+
yield from llm_in_loop(history, additional_inputs, -1)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
if __name__ == "__main__":
|
| 139 |
+
|
| 140 |
+
system_prompt = gr.Textbox(label="System prompt", value=cfg.system_prompt_template, lines=10)
|
| 141 |
+
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
|
| 142 |
+
demo.launch()
|
config.yaml
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Embeddings configuration
|
| 3 |
+
# ================================================================================
|
| 4 |
+
vdb:
|
| 5 |
+
embeddings_model: BAAI/bge-m3
|
| 6 |
+
number_of_contexts: 5
|
| 7 |
+
vs_local_path: data/vdb
|
| 8 |
+
embedding_score_threshold: 0.4
|
| 9 |
+
|
| 10 |
+
# Context formatting (join retrieved chunks with this string)
|
| 11 |
+
join_str: "\n\n"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# LLM client configuration
|
| 15 |
+
# ================================================================================
|
| 16 |
+
llm_generation: true
|
| 17 |
+
system_prompt_template: |
|
| 18 |
+
You are an AI assistant designed to answer user questions using externally retrieved information. You must detect the user's language, **translate the query into Spanish**, and **respond to the user in their original language**.
|
| 19 |
+
All retrieved content is available **only in Spanish**.
|
| 20 |
+
|
| 21 |
+
openai:
|
| 22 |
+
chat_params:
|
| 23 |
+
stream: True
|
| 24 |
+
max_tokens: 1000
|
| 25 |
+
temperature: 0.0
|
| 26 |
+
top_p: 0.9
|
data/vdb/index.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c78a012f3c7a62af99e9515f37add0dfb07da93af82fd451313a5362b825c7b
|
| 3 |
+
size 147501
|
data/vdb/index.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e4bc944ed53d695d51403efd5131ba8ff0c98439a617b18f823dd33a4c37ed0
|
| 3 |
+
size 24884
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==5.23.0
|
| 2 |
+
openai==1.68.2
|
| 3 |
+
python-dotenv==1.1.0
|
| 4 |
+
langchain-community==0.3.20
|
| 5 |
+
langchain-core==0.3.48
|
| 6 |
+
faiss-cpu==1.10.0
|
| 7 |
+
faiss-gpu==1.7.2
|
| 8 |
+
sentence-transformers==3.4.1
|
| 9 |
+
termcolor
|
src/tools.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from abc import ABC, abstractmethod
|
| 3 |
+
from typing import Dict, Union, get_origin, get_args
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
+
from types import UnionType
|
| 6 |
+
import logging
|
| 7 |
+
from src.vectorstore import VectorStore
|
| 8 |
+
from omegaconf import OmegaConf
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ToolBase(BaseModel, ABC):
|
| 12 |
+
@abstractmethod
|
| 13 |
+
def invoke(cls, input: Dict):
|
| 14 |
+
pass
|
| 15 |
+
|
| 16 |
+
@classmethod
|
| 17 |
+
def to_openai_tool(cls):
|
| 18 |
+
"""
|
| 19 |
+
Extracts function metadata from a Pydantic class, including function name, parameters, and descriptions.
|
| 20 |
+
Formats it into a structure similar to OpenAI's function metadata.
|
| 21 |
+
"""
|
| 22 |
+
function_metadata = {
|
| 23 |
+
"type": "function",
|
| 24 |
+
"function": {
|
| 25 |
+
"name": cls.__name__, # Function name is same as the class name, in lowercase
|
| 26 |
+
"description": cls.__doc__.strip(),
|
| 27 |
+
"parameters": {
|
| 28 |
+
"type": "object",
|
| 29 |
+
"properties": {},
|
| 30 |
+
"required": [],
|
| 31 |
+
},
|
| 32 |
+
},
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Iterate over the fields to add them to the parameters
|
| 36 |
+
for field_name, field_info in cls.model_fields.items():
|
| 37 |
+
|
| 38 |
+
# Field properties
|
| 39 |
+
field_type = "string" # Default to string, will adjust if it's a different type
|
| 40 |
+
annotation = field_info.annotation.__args__[0] if getattr(field_info.annotation, "__origin__", None) is Union else field_info.annotation
|
| 41 |
+
|
| 42 |
+
has_none = False
|
| 43 |
+
if get_origin(annotation) is UnionType: # Check if it's a Union type
|
| 44 |
+
args = get_args(annotation)
|
| 45 |
+
if type(None) in args:
|
| 46 |
+
has_none = True
|
| 47 |
+
args = [arg for arg in args if type(None) != arg]
|
| 48 |
+
if len(args) > 1:
|
| 49 |
+
raise TypeError("It can be union of only a valid type (str, int, bool, etc) and None")
|
| 50 |
+
elif len(args) == 0:
|
| 51 |
+
raise TypeError("There must be a valid type (str, int, bool, etc) not only None")
|
| 52 |
+
else:
|
| 53 |
+
annotation = args[0]
|
| 54 |
+
|
| 55 |
+
if annotation == int:
|
| 56 |
+
field_type = "integer"
|
| 57 |
+
elif annotation == bool:
|
| 58 |
+
field_type = "boolean"
|
| 59 |
+
|
| 60 |
+
# Add the field's description and type to the properties
|
| 61 |
+
function_metadata["function"]["parameters"]["properties"][field_name] = {
|
| 62 |
+
"type": field_type,
|
| 63 |
+
"description": field_info.description,
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# Determine if the field is required (not Optional or None)
|
| 67 |
+
if field_info.is_required():
|
| 68 |
+
function_metadata["function"]["parameters"]["required"].append(field_name)
|
| 69 |
+
has_none = True
|
| 70 |
+
|
| 71 |
+
# If there's an enum (like for `unit`), add it to the properties
|
| 72 |
+
if hasattr(field_info, 'default') and field_info.default is not None and isinstance(field_info.default, list):
|
| 73 |
+
function_metadata["function"]["parameters"]["properties"][field_name]["enum"] = field_info.default
|
| 74 |
+
if not has_none:
|
| 75 |
+
function_metadata["function"]["parameters"]["required"].append(field_name)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
return function_metadata
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Load the configuration file
|
| 84 |
+
# ===========================================================================
|
| 85 |
+
config_file = "config.yaml"
|
| 86 |
+
cfg = OmegaConf.load(config_file)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Initialize VectorStore, tools and oitools
|
| 90 |
+
# ===========================================================================
|
| 91 |
+
vdb = VectorStore(**cfg.vdb)
|
| 92 |
+
tools: Dict[str, ToolBase] = {}
|
| 93 |
+
oitools = []
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def tool_register(cls: BaseModel):
|
| 98 |
+
oaitool = cls.to_openai_tool()
|
| 99 |
+
|
| 100 |
+
oitools.append(oaitool)
|
| 101 |
+
tools[oaitool["function"]["name"]] = cls
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@tool_register
|
| 105 |
+
class retrieve_aina_data(ToolBase):
|
| 106 |
+
"""Retrieves relevant information from Aina Challenge vectorstore, based on the user's query."""
|
| 107 |
+
logging.info("@tool_register: retrieve_aina_data()")
|
| 108 |
+
|
| 109 |
+
query: str = Field(description="The user's input or question, used to search in Aina Challenge vectorstore.")
|
| 110 |
+
logging.info(f"query: {query}")
|
| 111 |
+
|
| 112 |
+
@classmethod
|
| 113 |
+
def invoke(cls, input: Dict) -> str:
|
| 114 |
+
logging.info(f"retrieve_aina_data.invoke() input: {input}")
|
| 115 |
+
|
| 116 |
+
# Check if the input is a dictionary
|
| 117 |
+
query = input.get("query", None)
|
| 118 |
+
if not query:
|
| 119 |
+
return "Missing required argument: query."
|
| 120 |
+
|
| 121 |
+
return vdb.get_context(query)
|
| 122 |
+
|
| 123 |
+
|
src/vectorstore.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_community.vectorstores import FAISS
|
| 2 |
+
# from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
+
from huggingface_hub import snapshot_download
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
from termcolor import cprint
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class VectorStore:
|
| 11 |
+
def __init__(self,
|
| 12 |
+
embeddings_model: str,
|
| 13 |
+
vs_local_path: str = None,
|
| 14 |
+
vs_hf_path: str = None,
|
| 15 |
+
number_of_contexts: int = 2,
|
| 16 |
+
context_template: str = "{}",
|
| 17 |
+
embedding_score_threshold: float = None,
|
| 18 |
+
join_str: str = "\n\n"
|
| 19 |
+
):
|
| 20 |
+
|
| 21 |
+
logging.info("Loading vectorstore...")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
self.number_of_contexts = number_of_contexts
|
| 25 |
+
self.context_template = context_template
|
| 26 |
+
self.join_str = join_str
|
| 27 |
+
self.embedding_score_threshold = embedding_score_threshold
|
| 28 |
+
|
| 29 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model)
|
| 30 |
+
logging.info(f"Loaded embeddings model: {embeddings_model}")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if vs_hf_path:
|
| 34 |
+
hf_vectorstore = snapshot_download(repo_id=vs_hf_path)
|
| 35 |
+
self.vdb = FAISS.load_local(hf_vectorstore, embeddings, allow_dangerous_deserialization=True)
|
| 36 |
+
logging.info(f"Loaded vectorstore from {vs_hf_path}")
|
| 37 |
+
else:
|
| 38 |
+
self.vdb = FAISS.load_local(vs_local_path, embeddings, allow_dangerous_deserialization=True)
|
| 39 |
+
logging.info(f"Loaded vectorstore from {vs_local_path}")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_context(self, query,):
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Retrieve documents
|
| 46 |
+
results = self.vdb.similarity_search_with_relevance_scores(query=query, k=self.number_of_contexts, score_threshold=self.embedding_score_threshold)
|
| 47 |
+
logging.info(f"Retrieved {len(results)} documents from the vectorstore.")
|
| 48 |
+
|
| 49 |
+
# Return formatted context
|
| 50 |
+
return self._beautiful_context(results)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def _beautiful_context(self, docs):
|
| 54 |
+
|
| 55 |
+
logging.info(f"Formatting {len(docs)} contexts...")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
contexts = []
|
| 59 |
+
|
| 60 |
+
for i, doc in enumerate(docs):
|
| 61 |
+
|
| 62 |
+
print()
|
| 63 |
+
cprint("-"*150, "yellow")
|
| 64 |
+
cprint(f"Document {i}:", "yellow")
|
| 65 |
+
cprint(f"Score: {doc[1]}", "yellow")
|
| 66 |
+
cprint("-"*150, "yellow")
|
| 67 |
+
print(doc[0].page_content)
|
| 68 |
+
|
| 69 |
+
contexts.append(doc[0].page_content)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
context = self.join_str.join(contexts)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
print()
|
| 76 |
+
cprint("-"*150, "green")
|
| 77 |
+
cprint(f"Final formatted context:", "green")
|
| 78 |
+
cprint("-"*150, "green")
|
| 79 |
+
print(context)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
return context
|
| 83 |
+
|