MLhouse-RAG / rag.py
acumplid
update
c686df0
raw
history blame
5.46 kB
import logging
import os
import requests
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
from huggingface_hub import snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
# Download the vectorstore from Hugging Face Hub
def __init__(self, hf_token, embeddings_model, repo_name):
vectorstore = snapshot_download(repo_name)
# self.model_name = model_name
self.hf_token = hf_token
# self.rerank_model = rerank_model
# self.rerank_number_contexts = rerank_number_contexts
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(vectorstore, embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
# def rerank_contexts(self, instruction, contexts, number_of_contexts=1):
# """
# Rerank the contexts based on their relevance to the given instruction.
# """
# rerank_model = self.rerank_model
# tokenizer = AutoTokenizer.from_pretrained(rerank_model)
# model = AutoModelForSequenceClassification.from_pretrained(rerank_model)
# def get_score(query, passage):
# """Calculate the relevance score of a passage with respect to a query."""
# inputs = tokenizer(query, passage, return_tensors='pt', truncation=True, padding=True, max_length=512)
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# score = logits.view(-1, ).float()
# return score
# scores = [get_score(instruction, c[0].page_content) for c in contexts]
# combined = list(zip(contexts, scores))
# sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
# sorted_texts, _ = zip(*sorted_combined)
# return sorted_texts[:number_of_contexts]
def get_context(self, instruction, number_of_contexts=2):
"""Retrieve the most relevant contexts for a given instruction."""
documentos = self.vectore_store.similarity_search_with_score(instruction, k=4)
# documentos = self.rerank_contexts(instruction, documentos, number_of_contexts=number_of_contexts)
print("Reranked documents")
return documentos
def predict_dolly(self, instruction, context, model_parameters):
api_key = os.getenv("HF_TOKEN")
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
payload = {
"inputs": query,
"parameters": model_parameters
}
response = requests.post(self.model_name, headers=headers, json=payload)
return response.json()[0]["generated_text"].split("###")[-1][8:]
def predict_completion(self, instruction, context, model_parameters):
client = OpenAI(
base_url=os.getenv("MODEL"),
api_key=os.getenv("HF_TOKEN")
)
query = f"Context:\n{context}\n\nQuestion:\n{instruction}"
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": instruction}
],
temperature=model_parameters["temperature"],
max_tokens=model_parameters["max_new_tokens"],
stream=False,
stop=["<|im_end|>"],
extra_body = {
"presence_penalty": model_parameters["repetition_penalty"] - 2,
"do_sample": False
}
)
response = chat_completion.choices[0].message.content
return response
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(doc[0].metadata["url"])
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
try:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
# response = self.predict_completion(prompt, text_context, model_parameters)
response = "Output"
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source
except Exception as err:
print(err)