Spaces:
Configuration error
Configuration error
lampongyuen
commited on
Commit
•
c6ad93b
1
Parent(s):
7ce11fa
Upload 9 files
Browse files- LICENSE +21 -0
- README.md +55 -12
- app.py +122 -0
- makeup.py +107 -0
- model.py +283 -0
- requirements.txt +8 -0
- resnet.py +109 -0
- scarlet.jpg +0 -0
- test.py +84 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 zll
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,55 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# face-makeup.PyTorch
|
2 |
+
Lip and hair color editor using face parsing maps.
|
3 |
+
|
4 |
+
<table>
|
5 |
+
|
6 |
+
<tr>
|
7 |
+
<th> </th>
|
8 |
+
<th>Hair</th>
|
9 |
+
<th>Lip</th>
|
10 |
+
</tr>
|
11 |
+
|
12 |
+
<!-- Line 1: Original Input -->
|
13 |
+
<tr>
|
14 |
+
<td><em>Original Input</em></td>
|
15 |
+
<td><img src="makeup/116_ori.png" height="256" width="256" alt="Original Input"></td>
|
16 |
+
<td><img src="makeup/116_lip_ori.png" height="256" width="256" alt="Original Input"></td>
|
17 |
+
</tr>
|
18 |
+
|
19 |
+
<!-- Line 2: Color -->
|
20 |
+
<tr>
|
21 |
+
<td >Color</td>
|
22 |
+
<td><img src="makeup/116_0.png" height="256" width="256" alt="Color"></td>
|
23 |
+
<td><img src="makeup/116_6.png" height="256" width="256" alt="Color"></td>
|
24 |
+
</tr>
|
25 |
+
|
26 |
+
<!-- Line 3: Color -->
|
27 |
+
<tr>
|
28 |
+
<td>Color</td>
|
29 |
+
<td><img src="makeup/116_1.png" height="256" width="256" alt="Color"></td>
|
30 |
+
<td><img src="makeup/116_3.png" height="256" width="256" alt="Color"></td>
|
31 |
+
</tr>
|
32 |
+
|
33 |
+
<!-- Line 4: Color -->
|
34 |
+
<tr>
|
35 |
+
<td>Color</td>
|
36 |
+
<td><img src="makeup/116_2.png" height="256" width="256" alt="Color"></td>
|
37 |
+
<td><img src="makeup/116_4.png" height="256" width="256" alt="Color"></td>
|
38 |
+
</tr>
|
39 |
+
|
40 |
+
</table>
|
41 |
+
|
42 |
+
### Using PyTorch 1.0 and python 3.x
|
43 |
+
|
44 |
+
## Demo
|
45 |
+
Change hair and lip color:
|
46 |
+
```Shell
|
47 |
+
python makeup.py --img-path imgs/116.jpg
|
48 |
+
```
|
49 |
+
### Try to use other colors:
|
50 |
+
Change the color list in **makeup.py**(line 83)
|
51 |
+
```
|
52 |
+
colors = [[230, 50, 20], [20, 70, 180], [20, 70, 180]]
|
53 |
+
```
|
54 |
+
### Train face parsing model (optional)
|
55 |
+
Follow this repo [zllrunning/face-parsing.PyTorch](https://github.com/zllrunning/face-parsing.PyTorch)
|
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from skimage.filters import gaussian
|
5 |
+
from test import evaluate
|
6 |
+
import streamlit as st
|
7 |
+
from PIL import Image, ImageColor
|
8 |
+
|
9 |
+
def sharpen(img):
|
10 |
+
img = img * 1.0
|
11 |
+
gauss_out = gaussian(img, sigma=5, multichannel=True)
|
12 |
+
|
13 |
+
alpha = 1.5
|
14 |
+
img_out = (img - gauss_out) * alpha + img
|
15 |
+
|
16 |
+
img_out = img_out / 255.0
|
17 |
+
|
18 |
+
mask_1 = img_out < 0
|
19 |
+
mask_2 = img_out > 1
|
20 |
+
|
21 |
+
img_out = img_out * (1 - mask_1)
|
22 |
+
img_out = img_out * (1 - mask_2) + mask_2
|
23 |
+
img_out = np.clip(img_out, 0, 1)
|
24 |
+
img_out = img_out * 255
|
25 |
+
return np.array(img_out, dtype=np.uint8)
|
26 |
+
|
27 |
+
|
28 |
+
def hair(image, parsing, part=17, color=[230, 50, 20]):
|
29 |
+
b, g, r = color #[10, 50, 250] # [10, 250, 10]
|
30 |
+
tar_color = np.zeros_like(image)
|
31 |
+
tar_color[:, :, 0] = b
|
32 |
+
tar_color[:, :, 1] = g
|
33 |
+
tar_color[:, :, 2] = r
|
34 |
+
np.repeat(parsing[:, :, np.newaxis], 3, axis=2)
|
35 |
+
|
36 |
+
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
37 |
+
tar_hsv = cv2.cvtColor(tar_color, cv2.COLOR_BGR2HSV)
|
38 |
+
|
39 |
+
if part == 12 or part == 13:
|
40 |
+
image_hsv[:, :, 0:2] = tar_hsv[:, :, 0:2]
|
41 |
+
else:
|
42 |
+
image_hsv[:, :, 0:1] = tar_hsv[:, :, 0:1]
|
43 |
+
|
44 |
+
changed = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR)
|
45 |
+
|
46 |
+
if part == 17:
|
47 |
+
changed = sharpen(changed)
|
48 |
+
|
49 |
+
|
50 |
+
changed[parsing != part] = image[parsing != part]
|
51 |
+
return changed
|
52 |
+
|
53 |
+
DEMO_IMAGE = 'imgs/116.jpg'
|
54 |
+
|
55 |
+
st.title('Virtual Makeup')
|
56 |
+
|
57 |
+
st.sidebar.title('Virtual Makeup')
|
58 |
+
st.sidebar.subheader('Parameters')
|
59 |
+
|
60 |
+
table = {
|
61 |
+
'hair': 17,
|
62 |
+
'upper_lip': 12,
|
63 |
+
'lower_lip': 13,
|
64 |
+
|
65 |
+
}
|
66 |
+
|
67 |
+
img_file_buffer = st.sidebar.file_uploader("Upload an image", type=[ "jpg", "jpeg",'png'])
|
68 |
+
|
69 |
+
if img_file_buffer is not None:
|
70 |
+
image = np.array(Image.open(img_file_buffer))
|
71 |
+
demo_image = img_file_buffer
|
72 |
+
|
73 |
+
else:
|
74 |
+
demo_image = DEMO_IMAGE
|
75 |
+
image = np.array(Image.open(demo_image))
|
76 |
+
|
77 |
+
#st.set_option('deprecation.showfileUploaderEncoding', False)
|
78 |
+
|
79 |
+
new_image = image.copy()
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
st.subheader('Original Image')
|
86 |
+
|
87 |
+
st.image(image,use_column_width = True)
|
88 |
+
|
89 |
+
|
90 |
+
cp = 'cp/79999_iter.pth'
|
91 |
+
ori = image.copy()
|
92 |
+
h,w,_ = ori.shape
|
93 |
+
|
94 |
+
#print(h)
|
95 |
+
#print(w)
|
96 |
+
image = cv2.resize(image,(1024,1024))
|
97 |
+
|
98 |
+
parsing = evaluate(demo_image, cp)
|
99 |
+
parsing = cv2.resize(parsing, image.shape[0:2], interpolation=cv2.INTER_NEAREST)
|
100 |
+
|
101 |
+
parts = [table['hair'], table['upper_lip'], table['lower_lip']]
|
102 |
+
|
103 |
+
hair_color = st.sidebar.color_picker('Pick the Hair Color', '#000')
|
104 |
+
hair_color = ImageColor.getcolor(hair_color, "RGB")
|
105 |
+
|
106 |
+
lip_color = st.sidebar.color_picker('Pick the Lip Color', '#edbad1')
|
107 |
+
|
108 |
+
lip_color = ImageColor.getcolor(lip_color, "RGB")
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
colors = [hair_color, lip_color, lip_color]
|
113 |
+
|
114 |
+
for part, color in zip(parts, colors):
|
115 |
+
image = hair(image, parsing, part, color)
|
116 |
+
|
117 |
+
image = cv2.resize(image,(w,h))
|
118 |
+
|
119 |
+
|
120 |
+
st.subheader('Output Image')
|
121 |
+
|
122 |
+
st.image(image,use_column_width = True)
|
makeup.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from skimage.filters import gaussian
|
5 |
+
from test import evaluate
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
|
9 |
+
def parse_args():
|
10 |
+
parse = argparse.ArgumentParser()
|
11 |
+
parse.add_argument('--img-path', default='imgs/116.jpg')
|
12 |
+
return parse.parse_args()
|
13 |
+
|
14 |
+
|
15 |
+
def sharpen(img):
|
16 |
+
img = img * 1.0
|
17 |
+
gauss_out = gaussian(img, sigma=5, multichannel=True)
|
18 |
+
|
19 |
+
alpha = 1.5
|
20 |
+
img_out = (img - gauss_out) * alpha + img
|
21 |
+
|
22 |
+
img_out = img_out / 255.0
|
23 |
+
|
24 |
+
mask_1 = img_out < 0
|
25 |
+
mask_2 = img_out > 1
|
26 |
+
|
27 |
+
img_out = img_out * (1 - mask_1)
|
28 |
+
img_out = img_out * (1 - mask_2) + mask_2
|
29 |
+
img_out = np.clip(img_out, 0, 1)
|
30 |
+
img_out = img_out * 255
|
31 |
+
return np.array(img_out, dtype=np.uint8)
|
32 |
+
|
33 |
+
|
34 |
+
def hair(image, parsing, part=17, color=[230, 50, 20]):
|
35 |
+
b, g, r = color #[10, 50, 250] # [10, 250, 10]
|
36 |
+
tar_color = np.zeros_like(image)
|
37 |
+
tar_color[:, :, 0] = b
|
38 |
+
tar_color[:, :, 1] = g
|
39 |
+
tar_color[:, :, 2] = r
|
40 |
+
|
41 |
+
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
42 |
+
tar_hsv = cv2.cvtColor(tar_color, cv2.COLOR_BGR2HSV)
|
43 |
+
|
44 |
+
if part == 12 or part == 13:
|
45 |
+
image_hsv[:, :, 0:2] = tar_hsv[:, :, 0:2]
|
46 |
+
else:
|
47 |
+
image_hsv[:, :, 0:1] = tar_hsv[:, :, 0:1]
|
48 |
+
|
49 |
+
changed = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2BGR)
|
50 |
+
|
51 |
+
if part == 17:
|
52 |
+
changed = sharpen(changed)
|
53 |
+
|
54 |
+
changed[parsing != part] = image[parsing != part]
|
55 |
+
return changed
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
# 1 face
|
60 |
+
# 11 teeth
|
61 |
+
# 12 upper lip
|
62 |
+
# 13 lower lip
|
63 |
+
# 17 hair
|
64 |
+
|
65 |
+
args = parse_args()
|
66 |
+
|
67 |
+
table = {
|
68 |
+
'hair': 17,
|
69 |
+
'upper_lip': 12,
|
70 |
+
'lower_lip': 13
|
71 |
+
}
|
72 |
+
|
73 |
+
image_path = args.img_path
|
74 |
+
cp = 'cp/79999_iter.pth'
|
75 |
+
|
76 |
+
image = cv2.imread(image_path)
|
77 |
+
ori = image.copy()
|
78 |
+
parsing = evaluate(image_path, cp)
|
79 |
+
parsing = cv2.resize(parsing, image.shape[0:2], interpolation=cv2.INTER_NEAREST)
|
80 |
+
|
81 |
+
parts = [table['hair'], table['upper_lip'], table['lower_lip']]
|
82 |
+
|
83 |
+
colors = [[230, 50, 20], [20, 70, 180], [20, 70, 180]]
|
84 |
+
|
85 |
+
for part, color in zip(parts, colors):
|
86 |
+
image = hair(image, parsing, part, color)
|
87 |
+
|
88 |
+
#cv2.imshow('image', cv2.resize(ori, (512, 512)))
|
89 |
+
cv2.imshow('color', cv2.resize(image, (512, 512)))
|
90 |
+
|
91 |
+
cv2.waitKey(0)
|
92 |
+
cv2.destroyAllWindows()
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
model.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision
|
9 |
+
|
10 |
+
from resnet import Resnet18
|
11 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
12 |
+
|
13 |
+
|
14 |
+
class ConvBNReLU(nn.Module):
|
15 |
+
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
16 |
+
super(ConvBNReLU, self).__init__()
|
17 |
+
self.conv = nn.Conv2d(in_chan,
|
18 |
+
out_chan,
|
19 |
+
kernel_size = ks,
|
20 |
+
stride = stride,
|
21 |
+
padding = padding,
|
22 |
+
bias = False)
|
23 |
+
self.bn = nn.BatchNorm2d(out_chan)
|
24 |
+
self.init_weight()
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = self.conv(x)
|
28 |
+
x = F.relu(self.bn(x))
|
29 |
+
return x
|
30 |
+
|
31 |
+
def init_weight(self):
|
32 |
+
for ly in self.children():
|
33 |
+
if isinstance(ly, nn.Conv2d):
|
34 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
35 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
36 |
+
|
37 |
+
class BiSeNetOutput(nn.Module):
|
38 |
+
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
39 |
+
super(BiSeNetOutput, self).__init__()
|
40 |
+
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
41 |
+
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
42 |
+
self.init_weight()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.conv(x)
|
46 |
+
x = self.conv_out(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
def init_weight(self):
|
50 |
+
for ly in self.children():
|
51 |
+
if isinstance(ly, nn.Conv2d):
|
52 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
53 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
54 |
+
|
55 |
+
def get_params(self):
|
56 |
+
wd_params, nowd_params = [], []
|
57 |
+
for name, module in self.named_modules():
|
58 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
59 |
+
wd_params.append(module.weight)
|
60 |
+
if not module.bias is None:
|
61 |
+
nowd_params.append(module.bias)
|
62 |
+
elif isinstance(module, nn.BatchNorm2d):
|
63 |
+
nowd_params += list(module.parameters())
|
64 |
+
return wd_params, nowd_params
|
65 |
+
|
66 |
+
|
67 |
+
class AttentionRefinementModule(nn.Module):
|
68 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
69 |
+
super(AttentionRefinementModule, self).__init__()
|
70 |
+
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
71 |
+
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
72 |
+
self.bn_atten = nn.BatchNorm2d(out_chan)
|
73 |
+
self.sigmoid_atten = nn.Sigmoid()
|
74 |
+
self.init_weight()
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
feat = self.conv(x)
|
78 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
79 |
+
atten = self.conv_atten(atten)
|
80 |
+
atten = self.bn_atten(atten)
|
81 |
+
atten = self.sigmoid_atten(atten)
|
82 |
+
out = torch.mul(feat, atten)
|
83 |
+
return out
|
84 |
+
|
85 |
+
def init_weight(self):
|
86 |
+
for ly in self.children():
|
87 |
+
if isinstance(ly, nn.Conv2d):
|
88 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
89 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
90 |
+
|
91 |
+
|
92 |
+
class ContextPath(nn.Module):
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
super(ContextPath, self).__init__()
|
95 |
+
self.resnet = Resnet18()
|
96 |
+
self.arm16 = AttentionRefinementModule(256, 128)
|
97 |
+
self.arm32 = AttentionRefinementModule(512, 128)
|
98 |
+
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
99 |
+
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
100 |
+
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
101 |
+
|
102 |
+
self.init_weight()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
H0, W0 = x.size()[2:]
|
106 |
+
feat8, feat16, feat32 = self.resnet(x)
|
107 |
+
H8, W8 = feat8.size()[2:]
|
108 |
+
H16, W16 = feat16.size()[2:]
|
109 |
+
H32, W32 = feat32.size()[2:]
|
110 |
+
|
111 |
+
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
112 |
+
avg = self.conv_avg(avg)
|
113 |
+
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
114 |
+
|
115 |
+
feat32_arm = self.arm32(feat32)
|
116 |
+
feat32_sum = feat32_arm + avg_up
|
117 |
+
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
118 |
+
feat32_up = self.conv_head32(feat32_up)
|
119 |
+
|
120 |
+
feat16_arm = self.arm16(feat16)
|
121 |
+
feat16_sum = feat16_arm + feat32_up
|
122 |
+
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
123 |
+
feat16_up = self.conv_head16(feat16_up)
|
124 |
+
|
125 |
+
return feat8, feat16_up, feat32_up # x8, x8, x16
|
126 |
+
|
127 |
+
def init_weight(self):
|
128 |
+
for ly in self.children():
|
129 |
+
if isinstance(ly, nn.Conv2d):
|
130 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
131 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
132 |
+
|
133 |
+
def get_params(self):
|
134 |
+
wd_params, nowd_params = [], []
|
135 |
+
for name, module in self.named_modules():
|
136 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
137 |
+
wd_params.append(module.weight)
|
138 |
+
if not module.bias is None:
|
139 |
+
nowd_params.append(module.bias)
|
140 |
+
elif isinstance(module, nn.BatchNorm2d):
|
141 |
+
nowd_params += list(module.parameters())
|
142 |
+
return wd_params, nowd_params
|
143 |
+
|
144 |
+
|
145 |
+
### This is not used, since I replace this with the resnet feature with the same size
|
146 |
+
class SpatialPath(nn.Module):
|
147 |
+
def __init__(self, *args, **kwargs):
|
148 |
+
super(SpatialPath, self).__init__()
|
149 |
+
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
150 |
+
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
151 |
+
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
152 |
+
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
153 |
+
self.init_weight()
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
feat = self.conv1(x)
|
157 |
+
feat = self.conv2(feat)
|
158 |
+
feat = self.conv3(feat)
|
159 |
+
feat = self.conv_out(feat)
|
160 |
+
return feat
|
161 |
+
|
162 |
+
def init_weight(self):
|
163 |
+
for ly in self.children():
|
164 |
+
if isinstance(ly, nn.Conv2d):
|
165 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
166 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
167 |
+
|
168 |
+
def get_params(self):
|
169 |
+
wd_params, nowd_params = [], []
|
170 |
+
for name, module in self.named_modules():
|
171 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
172 |
+
wd_params.append(module.weight)
|
173 |
+
if not module.bias is None:
|
174 |
+
nowd_params.append(module.bias)
|
175 |
+
elif isinstance(module, nn.BatchNorm2d):
|
176 |
+
nowd_params += list(module.parameters())
|
177 |
+
return wd_params, nowd_params
|
178 |
+
|
179 |
+
|
180 |
+
class FeatureFusionModule(nn.Module):
|
181 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
182 |
+
super(FeatureFusionModule, self).__init__()
|
183 |
+
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
184 |
+
self.conv1 = nn.Conv2d(out_chan,
|
185 |
+
out_chan//4,
|
186 |
+
kernel_size = 1,
|
187 |
+
stride = 1,
|
188 |
+
padding = 0,
|
189 |
+
bias = False)
|
190 |
+
self.conv2 = nn.Conv2d(out_chan//4,
|
191 |
+
out_chan,
|
192 |
+
kernel_size = 1,
|
193 |
+
stride = 1,
|
194 |
+
padding = 0,
|
195 |
+
bias = False)
|
196 |
+
self.relu = nn.ReLU(inplace=True)
|
197 |
+
self.sigmoid = nn.Sigmoid()
|
198 |
+
self.init_weight()
|
199 |
+
|
200 |
+
def forward(self, fsp, fcp):
|
201 |
+
fcat = torch.cat([fsp, fcp], dim=1)
|
202 |
+
feat = self.convblk(fcat)
|
203 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
204 |
+
atten = self.conv1(atten)
|
205 |
+
atten = self.relu(atten)
|
206 |
+
atten = self.conv2(atten)
|
207 |
+
atten = self.sigmoid(atten)
|
208 |
+
feat_atten = torch.mul(feat, atten)
|
209 |
+
feat_out = feat_atten + feat
|
210 |
+
return feat_out
|
211 |
+
|
212 |
+
def init_weight(self):
|
213 |
+
for ly in self.children():
|
214 |
+
if isinstance(ly, nn.Conv2d):
|
215 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
216 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
217 |
+
|
218 |
+
def get_params(self):
|
219 |
+
wd_params, nowd_params = [], []
|
220 |
+
for name, module in self.named_modules():
|
221 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
222 |
+
wd_params.append(module.weight)
|
223 |
+
if not module.bias is None:
|
224 |
+
nowd_params.append(module.bias)
|
225 |
+
elif isinstance(module, nn.BatchNorm2d):
|
226 |
+
nowd_params += list(module.parameters())
|
227 |
+
return wd_params, nowd_params
|
228 |
+
|
229 |
+
|
230 |
+
class BiSeNet(nn.Module):
|
231 |
+
def __init__(self, n_classes, *args, **kwargs):
|
232 |
+
super(BiSeNet, self).__init__()
|
233 |
+
self.cp = ContextPath()
|
234 |
+
## here self.sp is deleted
|
235 |
+
self.ffm = FeatureFusionModule(256, 256)
|
236 |
+
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
237 |
+
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
238 |
+
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
239 |
+
self.init_weight()
|
240 |
+
|
241 |
+
def forward(self, x):
|
242 |
+
H, W = x.size()[2:]
|
243 |
+
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
244 |
+
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
245 |
+
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
246 |
+
|
247 |
+
feat_out = self.conv_out(feat_fuse)
|
248 |
+
feat_out16 = self.conv_out16(feat_cp8)
|
249 |
+
feat_out32 = self.conv_out32(feat_cp16)
|
250 |
+
|
251 |
+
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
252 |
+
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
253 |
+
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
254 |
+
return feat_out, feat_out16, feat_out32
|
255 |
+
|
256 |
+
def init_weight(self):
|
257 |
+
for ly in self.children():
|
258 |
+
if isinstance(ly, nn.Conv2d):
|
259 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
260 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
261 |
+
|
262 |
+
def get_params(self):
|
263 |
+
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
264 |
+
for name, child in self.named_children():
|
265 |
+
child_wd_params, child_nowd_params = child.get_params()
|
266 |
+
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
267 |
+
lr_mul_wd_params += child_wd_params
|
268 |
+
lr_mul_nowd_params += child_nowd_params
|
269 |
+
else:
|
270 |
+
wd_params += child_wd_params
|
271 |
+
nowd_params += child_nowd_params
|
272 |
+
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
273 |
+
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
net = BiSeNet(19)
|
277 |
+
#net.cuda()
|
278 |
+
net.eval()
|
279 |
+
in_ten = torch.randn(16, 3, 640, 480)
|
280 |
+
out, out16, out32 = net(in_ten)
|
281 |
+
print(out.shape)
|
282 |
+
|
283 |
+
net.get_params()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.9.0
|
2 |
+
torchvision==0.10.0
|
3 |
+
scikit_image==0.18.2
|
4 |
+
streamlit==0.85.0
|
5 |
+
numpy==1.18.5
|
6 |
+
opencv_python_headless==4.5.2.54
|
7 |
+
Pillow==8.3.1
|
8 |
+
|
resnet.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.model_zoo as modelzoo
|
8 |
+
|
9 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
10 |
+
|
11 |
+
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
12 |
+
|
13 |
+
|
14 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
15 |
+
"""3x3 convolution with padding"""
|
16 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
17 |
+
padding=1, bias=False)
|
18 |
+
|
19 |
+
|
20 |
+
class BasicBlock(nn.Module):
|
21 |
+
def __init__(self, in_chan, out_chan, stride=1):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
24 |
+
self.bn1 = nn.BatchNorm2d(out_chan)
|
25 |
+
self.conv2 = conv3x3(out_chan, out_chan)
|
26 |
+
self.bn2 = nn.BatchNorm2d(out_chan)
|
27 |
+
self.relu = nn.ReLU(inplace=True)
|
28 |
+
self.downsample = None
|
29 |
+
if in_chan != out_chan or stride != 1:
|
30 |
+
self.downsample = nn.Sequential(
|
31 |
+
nn.Conv2d(in_chan, out_chan,
|
32 |
+
kernel_size=1, stride=stride, bias=False),
|
33 |
+
nn.BatchNorm2d(out_chan),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
residual = self.conv1(x)
|
38 |
+
residual = F.relu(self.bn1(residual))
|
39 |
+
residual = self.conv2(residual)
|
40 |
+
residual = self.bn2(residual)
|
41 |
+
|
42 |
+
shortcut = x
|
43 |
+
if self.downsample is not None:
|
44 |
+
shortcut = self.downsample(x)
|
45 |
+
|
46 |
+
out = shortcut + residual
|
47 |
+
out = self.relu(out)
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
52 |
+
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
53 |
+
for i in range(bnum-1):
|
54 |
+
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
55 |
+
return nn.Sequential(*layers)
|
56 |
+
|
57 |
+
|
58 |
+
class Resnet18(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(Resnet18, self).__init__()
|
61 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
62 |
+
bias=False)
|
63 |
+
self.bn1 = nn.BatchNorm2d(64)
|
64 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
65 |
+
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
66 |
+
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
67 |
+
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
68 |
+
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
69 |
+
self.init_weight()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv1(x)
|
73 |
+
x = F.relu(self.bn1(x))
|
74 |
+
x = self.maxpool(x)
|
75 |
+
|
76 |
+
x = self.layer1(x)
|
77 |
+
feat8 = self.layer2(x) # 1/8
|
78 |
+
feat16 = self.layer3(feat8) # 1/16
|
79 |
+
feat32 = self.layer4(feat16) # 1/32
|
80 |
+
return feat8, feat16, feat32
|
81 |
+
|
82 |
+
def init_weight(self):
|
83 |
+
state_dict = modelzoo.load_url(resnet18_url)
|
84 |
+
self_state_dict = self.state_dict()
|
85 |
+
for k, v in state_dict.items():
|
86 |
+
if 'fc' in k: continue
|
87 |
+
self_state_dict.update({k: v})
|
88 |
+
self.load_state_dict(self_state_dict)
|
89 |
+
|
90 |
+
def get_params(self):
|
91 |
+
wd_params, nowd_params = [], []
|
92 |
+
for name, module in self.named_modules():
|
93 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
94 |
+
wd_params.append(module.weight)
|
95 |
+
if not module.bias is None:
|
96 |
+
nowd_params.append(module.bias)
|
97 |
+
elif isinstance(module, nn.BatchNorm2d):
|
98 |
+
nowd_params += list(module.parameters())
|
99 |
+
return wd_params, nowd_params
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
net = Resnet18()
|
104 |
+
x = torch.randn(16, 3, 224, 224)
|
105 |
+
out = net(x)
|
106 |
+
print(out[0].size())
|
107 |
+
print(out[1].size())
|
108 |
+
print(out[2].size())
|
109 |
+
net.get_params()
|
scarlet.jpg
ADDED
test.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from model import BiSeNet
|
7 |
+
import os.path as osp
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
|
14 |
+
def vis_parsing_maps(im, parsing_anno, stride, save_im=False, save_path='vis_results/parsing_map_on_im.jpg'):
|
15 |
+
# Colors for all 20 parts
|
16 |
+
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
|
17 |
+
[255, 0, 85], [255, 0, 170],
|
18 |
+
[0, 255, 0], [85, 255, 0], [170, 255, 0],
|
19 |
+
[0, 255, 85], [0, 255, 170],
|
20 |
+
[0, 0, 255], [85, 0, 255], [170, 0, 255],
|
21 |
+
[0, 85, 255], [0, 170, 255],
|
22 |
+
[255, 255, 0], [255, 255, 85], [255, 255, 170],
|
23 |
+
[255, 0, 255], [255, 85, 255], [255, 170, 255],
|
24 |
+
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
25 |
+
|
26 |
+
im = np.array(im)
|
27 |
+
vis_im = im.copy().astype(np.uint8)
|
28 |
+
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
29 |
+
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
30 |
+
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
31 |
+
|
32 |
+
num_of_class = np.max(vis_parsing_anno)
|
33 |
+
|
34 |
+
for pi in range(1, num_of_class + 1):
|
35 |
+
index = np.where(vis_parsing_anno == pi)
|
36 |
+
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi]
|
37 |
+
|
38 |
+
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
39 |
+
# print(vis_parsing_anno_color.shape, vis_im.shape)
|
40 |
+
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
41 |
+
|
42 |
+
# Save result or not
|
43 |
+
if save_im:
|
44 |
+
cv2.imwrite(save_path[:-4] +'.png', vis_parsing_anno)
|
45 |
+
cv2.imwrite(save_path, vis_im, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
46 |
+
return vis_parsing_anno
|
47 |
+
# return vis_im
|
48 |
+
|
49 |
+
|
50 |
+
def evaluate(image_path='./imgs/116.jpg', cp='cp/79999_iter.pth'):
|
51 |
+
|
52 |
+
# if not os.path.exists(respth):
|
53 |
+
# os.makedirs(respth)
|
54 |
+
|
55 |
+
n_classes = 19
|
56 |
+
net = BiSeNet(n_classes=n_classes)
|
57 |
+
#net.cuda()
|
58 |
+
#net.load_state_dict(torch.load(cp))
|
59 |
+
net.load_state_dict(torch.load(cp, map_location=torch.device('cpu')))
|
60 |
+
net.eval()
|
61 |
+
|
62 |
+
to_tensor = transforms.Compose([
|
63 |
+
transforms.ToTensor(),
|
64 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
65 |
+
])
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
img = Image.open(image_path)
|
69 |
+
image = img.resize((512, 512), Image.BILINEAR)
|
70 |
+
img = to_tensor(image)
|
71 |
+
img = torch.unsqueeze(img, 0)
|
72 |
+
#img = img.cuda()
|
73 |
+
out = net(img)[0]
|
74 |
+
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
75 |
+
# print(parsing)
|
76 |
+
# print(np.unique(parsing))
|
77 |
+
|
78 |
+
# vis_parsing_maps(image, parsing, stride=1, save_im=False, save_path=osp.join(respth, dspth))
|
79 |
+
return parsing
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
evaluate(dspth='/home/zll/data/CelebAMask-HQ/test-img/116.jpg', cp='79999_iter.pth')
|
83 |
+
|
84 |
+
|