Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
class_names = ['appaloosa_leopard', 'dutch_warmblood', 'thoroughbred_chestnut'] | |
model_ft, model_transforms = create_model(num_classes=len(class_names)) | |
model_ft.load_state_dict( | |
torch.load("horses_swin_t.pt", map_location=torch.device("cpu")) | |
) | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
img = model_transforms(img).unsqueeze(0) | |
model_ft.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(model_ft(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
title = "HorseVision Mini 🐎" | |
description = "A feature extractor computer vision model to classify images of horses." | |
#article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
#article=article | |
) | |
demo.launch() | |