portfolio_management / pipeline.py
huggingface112's picture
imp left_fill, right_fill and update log
2b059b0
raw
history blame
14.2 kB
import datetime as dt
from sqlalchemy import create_engine, text
import pandas as pd
from streamz import Stream
import utils
import api
import pytz
import table_schema as ts
import db_operation as db
from log import Log
# import settings
# fetch new stock price
stock_price_stream = Stream()
# log
log = Log('instance/log.json')
# save stock price to db
# stock_price_stream.sink(save_stock_price)
# from dask.distributed import Client
# client = Client()
# import nest_asyncio
# nest_asyncio.apply()
# import settings
# run using --setup
db_url = 'sqlite:///instance/local.db'
def create_portfolio_profile_df(stocks: list[dict]):
profile_df = pd.DataFrame(stocks)
profile_df = add_details_to_stock_df(profile_df)
# check if there is duplicate ticker
if profile_df.ticker.duplicated().any():
raise Exception(
'VALIDATION ERROR: cannot have duplicate ticker with the same date')
return profile_df
def need_to_update(table_name: str, freq: dt.datetime):
'''check table with table_name need to update
Return
------
None if no need to update
(start_date, end_date, freq) if need to update
'''
with create_engine(db_url).connect() as conn:
max_date = conn.execute(
text(f"SELECT MAX(date) FROM {table_name}")).fetchone()[0]
max_date = utils.convert_string_to_datetime(max_date)
current_time = utils.time_in_beijing()
if current_time - max_date > freq:
return (max_date + freq, current_time, freq)
else:
return None
def need_to_forward_fill_stock_price():
'''
check if need to pull new stock price from jq
RETURN
------
(min_date, max_date) : if update is needed
the start and end date need to fetch new stock price
None if no need to fetch new stock price
'''
# TODO refactor to db
# get min date from portfolio_profile
with create_engine(db_url).connect() as conn:
table_name = 'portfolio_profile'
query = f"SELECT DISTINCT date FROM {table_name} ORDER BY date ASC LIMIT 1"
df = pd.read_sql(query, con=conn)
df.date = pd.to_datetime(df.date)
min_date = df.date[0]
# TODO refactor to db
# compare to min date from stocks_price
with create_engine(db_url).connect() as conn:
table_name = 'stocks_price'
query = f"SELECT DISTINCT time FROM {table_name} ORDER BY time ASC LIMIT 1"
df = pd.read_sql(query, con=conn)
df.time = pd.to_datetime(df.time)
# return
if min_date <= df.time[0]:
return (min_date, df.time[0] - dt.timedelta(days=1))
else:
return None
def get_most_recent_profile(type):
table_name = 'benchmark_profile' if type == 'benchmark' else 'portfolio_profile'
query = f"SELECT * FROM {table_name} WHERE date = (SELECT MAX(date) FROM {table_name})"
with create_engine(db_url).connect() as conn:
df = pd.read_sql(query, con=conn)
# convert date to datetime object
df['date'] = pd.to_datetime(df['date'])
return df
def update_stocks_details_to_db():
'''override stocks_details table with new stocks detail
Table Schema
------------
'display_name', 'name', 'start_date', 'end_date', 'type', 'ticker',
'sector', 'aggregate_sector'
'''
df = api.get_all_stocks_detail()
# validation
if not _validate_schema(df, ts.STOCKS_DETAILS_TABLE_SCHEMA):
raise ValueError(
'df has different schema than STOCKS_DETAILS_TABLE_SCHEMA')
with create_engine(db_url).connect() as conn:
df.to_sql(ts.STOCKS_DETAILS_TABLE, con=conn,
if_exists='replace', index=False)
def need_to_update_stocks_price(delta_time):
# convert p_portfolio.date[0] to timezone-aware datetime object
tz = pytz.timezone('Asia/Shanghai')
# get stock price df
with create_engine(db_url).connect() as conn:
# check if a table exist
if not conn.dialect.has_table(conn, 'stocks_price'):
return True
else:
query = "SELECT * FROM stocks_price WHERE time = (SELECT MAX(time) FROM stocks_price)"
most_recent_price = pd.read_sql(query, con=conn)
most_recent_price.time = pd.to_datetime(most_recent_price.time)
date_time = tz.localize(most_recent_price.time[0].to_pydatetime())
if utils.time_in_beijing() - date_time > delta_time:
return True
else:
return False
def processing():
'''
run the whole processing pipeline here
'''
pass
def add_details_to_stock_df(stock_df):
with create_engine(db_url).connect() as conn:
detail_df = pd.read_sql(ts.STOCKS_DETAILS_TABLE, con=conn)
merged_df = pd.merge(stock_df, detail_df[
['sector', 'name',
'aggregate_sector',
'display_name',
'ticker']
], on='ticker', how='left')
merged_df['aggregate_sector'].fillna('其他', inplace=True)
return merged_df
def _validate_schema(df, schema):
'''
validate df has the same columns and data types as schema
Parameters
----------
df: pd.DataFrame
schema: dict
{column_name: data_type}
Returns
-------
bool
True if df has the same columns and data types as schema
False otherwise
'''
# check if the DataFrame has the same columns as the schema
if set(df.columns) != set(schema.keys()):
return False
# check if the data types of the columns match the schema
# TODO: ignoring type check for now
# for col, dtype in schema.items():
# if df[col].dtype != dtype:
# return False
return True
def save_stock_price_to_db(df: pd.DataFrame):
print('saving to stock to db')
with create_engine(db_url).connect() as conn:
df.to_sql('stocks_price', con=conn, if_exists='append', index=False)
def update_portfolio_profile_to_db(portfolio_df):
'''overwrite the portfolio profile table in db'''
if (_validate_schema(portfolio_df, ts.PORTFOLIO_TABLE_SCHEMA)):
raise ValueError(
'portfoliijuo_df has different schema than PORTFOLIO_DB_SCHEMA')
with create_engine(db_url).connect() as conn:
print("updating profile to db")
try:
portfolio_df[ts.PORTFOLIO_TABLE_SCHEMA.keys()].to_sql(
ts.PORTFOLIO_TABLE, con=conn, if_exists='append', index=False)
return True
except:
return False
# TODO trigger recomputation of analysis
def right_fill_stock_price():
'''
update all stocks price until today.
if no portfolio, terminate without warning
default start date is the most recent date in portfolio
'''
most_recent_portfolio = db.get_most_recent_portfolio_profile()
most_recent_stocks_price = db.get_most_recent_stocks_price()
# fetch all stocks price until today
stocks_dates = most_recent_stocks_price.time
portfolio_dates = most_recent_portfolio.date
if len(portfolio_dates) == 0:
return
start = stocks_dates[0] if len(stocks_dates) > 0 else portfolio_dates[0]
end = utils.time_in_beijing()
# frequency is set to daily
if end - start > dt.timedelta(days=1):
new_stocks_price = fetch_all_stocks_price_between(start, end)
db.append_to_stocks_price_table(new_stocks_price)
def fetch_all_stocks_price_between(start, end):
'''
patch stock price db with all daily stock price within window
inclusive on both start and end date
Parameters
----------
start : datetime
start date inclusive
end: datetime
end date inclusive
Returns
-------
None
'''
# all trading stocks available between start day and end date
all_stocks = db.get_all_stocks()
selected_stocks = all_stocks[(all_stocks.start_date <= end) & (
all_stocks.end_date >= start)]
tickers = selected_stocks.ticker.to_list()
# fetch stock price and append to db
stock_price = api.fetch_stocks_price(
security=tickers,
start_date=start,
end_date=end,
frequency='daily',
skip_paused=True,)
# drop where closing price is null
stock_price.dropna(subset=['close'], inplace=True)
return stock_price
def right_fill_bechmark_profile():
'''
right fill the benchmark profile table
fill any missing entries between the most recent date in benchmark profile and today
if no benchmark profile, fill from most recent date in portfolio profile to today
if no portfolio profile, terminate without warning
'''
# get most recent date in benchmark profile
b_ends = db.get_most_recent_benchmark_profile().date
# get todays date
today = utils.time_in_beijing()
# most recent portfolio dates
p_ends = db.get_most_recent_portfolio_profile().date
# if portfolio is empty, terminate
if len(p_ends) == 0:
return
# if no benchmark profile, start is the most recent date in benchmark profile, end is today
elif len(b_ends) == 0:
start = p_ends[0]
end = today
# start is most recent benchmark, end is today
else:
start = b_ends[0]
end = today
# fetch and update
new_entry = api.fetch_benchmark_profile(start, end)
detailed_new_entry = utils.add_details_to_stock_df(new_entry)
db.append_to_benchmark_profile(detailed_new_entry)
def left_fill_benchmark_profile():
'''
left fill the benchmark profile table,
fill any missing entries between the earliest date in portfolio profile and the earliest date in benchmark profile
if no portfolio profile, terminate without warning
if no benchmark profile, the span would be from the earliest date in portfolio profile to the most recent date in portfolio profile
'''
# get starttime of benchmark profile
b_starts = db.get_oldest_benchmark_profile().date
# get starttime of portfolio profile
p_starts = db.get_oldest_portfolio_profile().date
# if no portfolio profile, terminate
if len(p_starts) == 0:
return
# use start and end date of portfolio profile if no benchmark profile entry
elif len(b_starts) == 0:
p_start = p_starts[0]
b_start = db.get_most_recent_portfolio_profile().date[0]
else:
b_start = b_starts[0]
p_start = p_starts[0]
if p_start < b_start:
# back fill benchmark profile
new_entry = api.fetch_benchmark_profile(p_start, b_start)
detailed_new_entry = utils.add_details_to_stock_df(new_entry)
# handle duplicate display_name
detailed_new_entry.drop(columns=['display_name_x'], inplace=True)
detailed_new_entry.rename(
columns={'display_name_y': 'display_name'}, inplace=True)
# append to db
db.append_to_benchmark_profile(detailed_new_entry)
# return detailed_new_entry
# else do nothing
def left_fill_stocks_price():
'''
left fill stock price
fill missing entries between the oldest date in portfolio profile and the oldest date in stock price table
if no portfolio profile, terminate without warning
if no stock price table, the span would be from the oldest date in portfolio profile to the most recent date in portfolio profile
'''
# get oldest time in portfolio profile
p_start = db.get_oldest_portfolio_profile().date
# get oldest time in stock price table
stock_start = db.get_oldest_stocks_price().time
# if no portfolio profile, terminate
if len(p_start) == 0:
return
# no stock price, span the entire portfolio profile
elif len(stock_start) == 0:
start = p_start[0]
end = db.get_most_recent_portfolio_profile().date[0]
else:
start = p_start[0]
end = stock_start[0]
if start < end:
# fetch and update
new_entry = fetch_all_stocks_price_between(start, end)
db.append_to_stocks_price_table(new_entry)
def updaet_benchmark_to_db():
'''
update daily benchmark weight
'''
pass
async def daily_update():
last_update = log.get_time('daily_update')
if last_update is None or utils.time_in_beijing() - last_update >= dt.timedelta(days=1):
print("running daily update")
# check if need to update
# update stock price
left_fill_stocks_price()
right_fill_stock_price()
print("updated stocks price")
# update benchmark index
left_fill_benchmark_profile()
right_fill_bechmark_profile()
print("updated benchmark profile")
# update all stock detail
update_stocks_details_to_db()
print("updated stocks details")
log.update_log('daily_update')
else:
print("no update needed")
def update():
'''
run only once, update stock price and benchmark profile
'''
print("Checking stock_price table")
# collect daily stock price until today in beijing time
if need_to_update_stocks_price(dt.timedelta(days=1)):
print("Updating stock_price table")
# stock_df = update_stock_price()
stock_df = add_details_to_stock_df(stock_df)
save_stock_price_to_db(stock_df)
stock_price_stream.emit(stock_df)
async def run():
'''
start the pipeline here to check update and fetch new data
'''
print("background_task running!")
# TODO: update benchmark_profile
# if (need_to_update_stocks_price()):
if True:
print("running update")
# TODO testing code get stock price df
with create_engine(db_url).connect() as conn:
stock_df = pd.read_sql('stocks_price', con=conn)
print('sending data!')
# print(stock_df)
stock_price_stream.emit(stock_df)
# # latest stock price
# stock_df = update_stocks_price()
# # add display name and sector to stock_df
# stock_df = add_details_to_stock_df(stock_df)
# save_stock_price_to_db(stock_df)
# stock_price_stream.emit(stock_df)
# update sotck_price
# send fetched data
# run processing
# send fetched data