lamhieu commited on
Commit
3b3bd32
·
1 Parent(s): 3150894

chore: adding `embeddinggemma-300m` model

Browse files
lightweight_embeddings/__init__.py CHANGED
@@ -182,6 +182,7 @@ def create_main_interface():
182
  "multilingual-e5-small",
183
  "multilingual-e5-base",
184
  "multilingual-e5-large",
 
185
  "siglip-base-patch16-256-multilingual",
186
  ]
187
 
@@ -233,7 +234,7 @@ def create_main_interface():
233
  -H 'Content-Type: application/json' \\
234
  -H 'Authorization: Bearer YOUR_AUTH_KEY' \\
235
  -d '{
236
- "model": "snowflake-arctic-embed-l-v2.0",
237
  "input": "That is a happy person"
238
  }'
239
  ```
@@ -245,7 +246,7 @@ def create_main_interface():
245
  -H 'accept: application/json' \\
246
  -H 'Content-Type: application/json' \\
247
  -d '{
248
- "model": "snowflake-arctic-embed-l-v2.0",
249
  "input": "That is a happy person"
250
  }'
251
  ```
@@ -258,7 +259,7 @@ def create_main_interface():
258
  -H 'Content-Type: application/json' \\
259
  -H 'Authorization: Bearer YOUR_AUTH_KEY' \\
260
  -d '{
261
- "model": "snowflake-arctic-embed-l-v2.0",
262
  "queries": "That is a happy person",
263
  "candidates": [
264
  "That is a happy dog",
 
182
  "multilingual-e5-small",
183
  "multilingual-e5-base",
184
  "multilingual-e5-large",
185
+ "embeddinggemma-300m",
186
  "siglip-base-patch16-256-multilingual",
187
  ]
188
 
 
234
  -H 'Content-Type: application/json' \\
235
  -H 'Authorization: Bearer YOUR_AUTH_KEY' \\
236
  -d '{
237
+ "model": "embeddinggemma-300m",
238
  "input": "That is a happy person"
239
  }'
240
  ```
 
246
  -H 'accept: application/json' \\
247
  -H 'Content-Type: application/json' \\
248
  -d '{
249
+ "model": "embeddinggemma-300m",
250
  "input": "That is a happy person"
251
  }'
252
  ```
 
259
  -H 'Content-Type: application/json' \\
260
  -H 'Authorization: Bearer YOUR_AUTH_KEY' \\
261
  -d '{
262
+ "model": "embeddinggemma-300m",
263
  "queries": "That is a happy person",
264
  "candidates": [
265
  "That is a happy dog",
lightweight_embeddings/router.py CHANGED
@@ -37,7 +37,7 @@ class EmbeddingRequest(BaseModel):
37
  "Which model ID to use? "
38
  "Text options: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', "
39
  "'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', "
40
- "'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
41
  "Image option: ['siglip-base-patch16-256-multilingual']."
42
  ),
43
  )
 
37
  "Which model ID to use? "
38
  "Text options: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', "
39
  "'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', "
40
+ "'paraphrase-multilingual-mpnet-base-v2', 'bge-m3', 'gte-multilingual-base', 'embeddinggemma']. "
41
  "Image option: ['siglip-base-patch16-256-multilingual']."
42
  ),
43
  )
lightweight_embeddings/service.py CHANGED
@@ -36,6 +36,7 @@ class TextModelType(str, Enum):
36
  PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = "paraphrase-multilingual-mpnet-base-v2"
37
  BGE_M3 = "bge-m3"
38
  GTE_MULTILINGUAL_BASE = "gte-multilingual-base"
 
39
 
40
 
41
  class ImageModelType(str, Enum):
@@ -57,6 +58,7 @@ class MaxModelLength(str, Enum):
57
  PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = 128
58
  BGE_M3 = 8192
59
  GTE_MULTILINGUAL_BASE = 8192
 
60
 
61
 
62
  class ModelInfo(NamedTuple):
@@ -114,6 +116,10 @@ class ModelConfig:
114
  model_id="onnx-community/gte-multilingual-base",
115
  onnx_file="onnx/model_quantized.onnx",
116
  ),
 
 
 
 
117
  }
118
  return text_configs[self.text_model_type]
119
 
 
36
  PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = "paraphrase-multilingual-mpnet-base-v2"
37
  BGE_M3 = "bge-m3"
38
  GTE_MULTILINGUAL_BASE = "gte-multilingual-base"
39
+ EMBEDDINGGEMMA300M = "embeddinggemma-300m"
40
 
41
 
42
  class ImageModelType(str, Enum):
 
58
  PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = 128
59
  BGE_M3 = 8192
60
  GTE_MULTILINGUAL_BASE = 8192
61
+ EMBEDDINGGEMMA300M = 2048
62
 
63
 
64
  class ModelInfo(NamedTuple):
 
116
  model_id="onnx-community/gte-multilingual-base",
117
  onnx_file="onnx/model_quantized.onnx",
118
  ),
119
+ TextModelType.EMBEDDINGGEMMA300M: ModelInfo(
120
+ model_id="onnx-community/embeddinggemma-300m-ONNX",
121
+ onnx_file="onnx/model_quantized.onnx",
122
+ ),
123
  }
124
  return text_configs[self.text_model_type]
125