lamhieu's picture
chore: initialize the app
7a58a7d
raw
history blame
24.5 kB
import torch
import numpy as np
import torch.nn as nn
import math
from typing import Optional, Tuple
import torch.nn.functional as F
from transformers.cache_utils import Cache
from flash_attn import flash_attn_func, flash_attn_varlen_func
from .selfextend_flash_attn import self_extend_flash_forward
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin) if not q is None else None
k_embed = (k * cos) + (rotate_half(k) * sin) if not k is None else None
return q_embed, k_embed
def self_extend_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
scale_base: Optional[int] = -1,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len) # only consider bsz=1 for now.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 // group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
else:
causal_mask = attention_mask
group_attn_weights = group_attn_weights + causal_mask
neighbor_attn_weights = neighbor_attn_weights + causal_mask
if q_len == 1:
neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask[:, -group_size_2:] = 1
elif q_len == kv_seq_len:
neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask = torch.tril(neighbor_attention_mask)
if q_len-group_size_2 > 0:
group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
else:
raise ValueError("q_len should be 1 or seq_len.")
neighbor_attention_mask = neighbor_attention_mask.bool()
attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def flash_self_extend_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
scale_base: Optional[int] = -1,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Require updating tansformers to >= 4.38.2, flash_attn >= 2.5.6
a. Only support causal mask.
b. Don't support atttention_mask.
c. Never test it with batch size > 1.
d. Only support q_len = 1 or q_len = seq_len.
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
# only consider bsz=1 for now.
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len)
attn_dropout = self.config.attention_dropout if self.training else 0.0
if q_len == 1:
# We implement the case q_len == 1 separately, by manipulating positions.
# for our flash implementation doesnot work for decoding stage at the releasing time.
neighbor_key_position = position_ids[:, -1] - key_position
_re_group_size_2 = 0 if position_ids.max() < group_size_2 else group_size_2
group_key_position = position_ids[:, -1]//group_size_1 - key_position//group_size_1 + (_re_group_size_2 - _re_group_size_2//group_size_1)
decode_key_position = torch.cat([group_key_position[:, :-group_size_2], neighbor_key_position[:,-group_size_2:]], dim=1)
decode_k_cos, decode_k_sin = self.rotary_emb(value_states, decode_key_position)#, seq_len=None)
#import pdb; pdb.set_trace()
#neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, cos, sin, query_position_ids)
decode_query_states = scaled_query.transpose(1,2).contiguous() # position 0: cos 0 = 1, sin 0 = 0
_, decode_key_states = apply_rotary_pos_emb(None, key_states, decode_k_cos, -decode_k_sin, decode_key_position)
decode_key_states = repeat_kv(decode_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
decode_value_states = repeat_kv(value_states, self.num_key_value_groups).transpose(1, 2).contiguous()
attn_output = flash_attn_func(decode_query_states,
decode_key_states,
decode_value_states,
attn_dropout,
softmax_scale=None,
causal=True)
elif q_len == kv_seq_len:
# set correct position_ids & apply RoPE.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 / group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_query_states = neighbor_query_states.transpose(1, 2).contiguous()
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
group_query_states = group_query_states.transpose(1, 2).contiguous()
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups).transpose(1, 2).contiguous()
value_states = repeat_kv(value_states, self.num_key_value_groups).transpose(1, 2).contiguous()
attn_output = self_extend_flash_forward(self,
query_position,
group_size_2,
neighbor_query_states,
neighbor_key_states,
group_query_states,
group_key_states,
value_states,
attention_mask,
bsz,
q_len,
kv_seq_len,
attn_dropout,
)
else:
raise ValueError("q_len should be 1 or seq_len.")
attn_output = attn_output.contiguous()
attn_output = attn_output.view(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def lm_infinite_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
group_size_1: Optional[float] = 8,
group_size_2: Optional[float] = 1024,
initial_num: Optional[int] = 1,
scale_base: Optional[int] = -1,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if scale_base > 0:
scaled_query = query_states * ((position_ids + 1)[:, None, :, None].log() / np.log(scale_base)).clip(1).to(query_states.dtype) # log scale
#scaled_query = query_states * (((0.1*(((position_ids+1)[:, None, :, None]/scale_base).log())+1)**2).clip(1)).to(query_states.dtype) # Yarn scale
else:
scaled_query = query_states
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
query_position = position_ids
key_position = position_ids if q_len != 1 else torch.arange(kv_seq_len, dtype=position_ids.dtype).to(query_position.device).view(1, kv_seq_len) # only consider bsz=1 for now.
neighbor_q_cos, neighbor_q_sin = self.rotary_emb(value_states, query_position)#, seq_len=None)
neighbor_k_cos, neighbor_k_sin = self.rotary_emb(value_states, key_position)#, seq_len=None)
_re_group_size_2 = 0 if query_position.max() < group_size_2 else group_size_2 # in case that, the smallest q position, g2-g2//g1 exceed the max position
group_query_position = query_position // group_size_1 + _re_group_size_2 - _re_group_size_2 / group_size_1
group_key_position = key_position // group_size_1
group_q_cos, group_q_sin = self.rotary_emb(value_states, group_query_position)#, seq_len=None)
group_k_cos, group_k_sin = self.rotary_emb(value_states, group_key_position)#, seq_len=None)
neighbor_query_states, _ = apply_rotary_pos_emb(scaled_query, None, neighbor_q_cos, neighbor_q_sin, None)
_, neighbor_key_states = apply_rotary_pos_emb(None, key_states, neighbor_k_cos, neighbor_k_sin, None)
group_query_states, _ = apply_rotary_pos_emb(scaled_query, None, group_q_cos, group_q_sin, None)
_, group_key_states = apply_rotary_pos_emb(None, key_states, group_k_cos, group_k_sin, None)
neighbor_key_states = repeat_kv(neighbor_key_states, self.num_key_value_groups)
group_key_states = repeat_kv(group_key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
neighbor_attn_weights = torch.matmul(neighbor_query_states, neighbor_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
group_attn_weights = torch.matmul(group_query_states, group_key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
if cache_position is not None:
causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]]
else:
causal_mask = attention_mask
group_attn_weights = group_attn_weights + causal_mask
neighbor_attn_weights = neighbor_attn_weights + causal_mask
if q_len == 1:
neighbor_attention_mask = torch.zeros((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask[:, -group_size_2:] = 1
elif q_len == kv_seq_len:
neighbor_attention_mask = torch.ones((q_len, kv_seq_len), device=neighbor_attn_weights.device)
neighbor_attention_mask = torch.tril(neighbor_attention_mask)
if q_len-group_size_2 > 0:
group_attention_mask = torch.tril(torch.ones((q_len-group_size_2, kv_seq_len-group_size_2), device=group_attn_weights.device))
neighbor_attention_mask[group_size_2:, :-group_size_2] -= group_attention_mask
else:
raise ValueError("q_len should be 1 or seq_len.")
neighbor_attention_mask = neighbor_attention_mask.bool()
attn_weights = torch.where(neighbor_attention_mask, neighbor_attn_weights, group_attn_weights)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value