Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						c5a2694
	
1
								Parent(s):
							
							34c16bd
								
test metrics for best models
Browse files
    	
        app_implementation.py
    CHANGED
    
    | @@ -26,7 +26,7 @@ class RetrievalApp: | |
| 26 |  | 
| 27 | 
             
                def get_device_options(self):
         | 
| 28 | 
             
                    if self.is_cuda_available():
         | 
| 29 | 
            -
                        return [" | 
| 30 | 
             
                    else:
         | 
| 31 | 
             
                        return ["cpu"]
         | 
| 32 |  | 
|  | |
| 26 |  | 
| 27 | 
             
                def get_device_options(self):
         | 
| 28 | 
             
                    if self.is_cuda_available():
         | 
| 29 | 
            +
                        return ["cuda", "cpu"]
         | 
| 30 | 
             
                    else:
         | 
| 31 | 
             
                        return ["cpu"]
         | 
| 32 |  | 
    	
        assets/nbow_dependencies-nbow-nbow-mnrl
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"accuracy@k": {"1": 0.3388, "3": 0.4821, "5": 0.5212, "10": 0.5896}, "precision@k": {"1": 0.3388, "3": 0.2888, "5": 0.2502, "10": 0.2088}, "recall@k": {"1": 0.0481, "3": 0.0953, "5": 0.1204, "10": 0.1725}, "ndcg@k": {"10": 0.2811}, "mrr@k": {"10": 0.419}, "map@k": {"10": 0.2044}, "columns": "dependencies", "model_name": "nbow_dependencies-nbow-nbow-mnrl"}
         | 
    	
        assets/nbow_readme-nbow-nbow-mnrl
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"accuracy@k": {"1": 0.3225, "3": 0.4821, "5": 0.5537, "10": 0.6189}, "precision@k": {"1": 0.3225, "3": 0.2899, "5": 0.2495, "10": 0.2007}, "recall@k": {"1": 0.0451, "3": 0.0982, "5": 0.1281, "10": 0.1706}, "ndcg@k": {"10": 0.2748}, "mrr@k": {"10": 0.4175}, "map@k": {"10": 0.1938}, "columns": "readme", "model_name": "nbow_readme-nbow-nbow-mnrl"}
         | 
    	
        assets/nbow_readme_dependencies-nbow-nbow-mnrl
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"accuracy@k": {"1": 0.4235, "3": 0.5375, "5": 0.5896, "10": 0.6482}, "precision@k": {"1": 0.4235, "3": 0.342, "5": 0.3199, "10": 0.2557}, "recall@k": {"1": 0.063, "3": 0.1208, "5": 0.1642, "10": 0.2273}, "ndcg@k": {"10": 0.3508}, "mrr@k": {"10": 0.4955}, "map@k": {"10": 0.2688}, "columns": "readme_dependencies", "model_name": "nbow_readme_dependencies-nbow-nbow-mnrl"}
         | 
    	
        assets/nbow_titles-nbow-nbow-mnrl
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"accuracy@k": {"1": 0.6645, "3": 0.7622, "5": 0.8046, "10": 0.8306}, "precision@k": {"1": 0.6645, "3": 0.5765, "5": 0.5121, "10": 0.4075}, "recall@k": {"1": 0.1201, "3": 0.2775, "5": 0.3462, "10": 0.4477}, "ndcg@k": {"10": 0.6024}, "mrr@k": {"10": 0.7198}, "map@k": {"10": 0.5262}, "columns": "titles", "model_name": "nbow_titles-nbow-nbow-mnrl"}
         | 
    	
        assets/nbow_titles_dependencies-nbow-nbow-mnrl
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"accuracy@k": {"1": 0.4169, "3": 0.5179, "5": 0.57, "10": 0.6352}, "precision@k": {"1": 0.4169, "3": 0.3333, "5": 0.3003, "10": 0.241}, "recall@k": {"1": 0.0537, "3": 0.107, "5": 0.1518, "10": 0.2045}, "ndcg@k": {"10": 0.3294}, "mrr@k": {"10": 0.4847}, "map@k": {"10": 0.2493}, "columns": "titles_dependencies", "model_name": "nbow_titles_dependencies-nbow-nbow-mnrl"}
         | 
    	
        pages/2_Statistics.py
    CHANGED
    
    | @@ -1,6 +1,30 @@ | |
| 1 | 
             
            import pandas as pd
         | 
| 2 | 
             
            import streamlit as st
         | 
| 3 | 
             
            import config
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 4 |  | 
| 5 | 
             
            best_results_df = pd.read_csv(config.best_tasks_path)
         | 
| 6 |  | 
|  | |
| 1 | 
             
            import pandas as pd
         | 
| 2 | 
             
            import streamlit as st
         | 
| 3 | 
             
            import config
         | 
| 4 | 
            +
            from pathlib import Path as P
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            nbow_results_path = P("assets").glob("nbow*")
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            def display_metrics_dict(metrics, display_only_accuracy):
         | 
| 11 | 
            +
                model_name = metrics.pop("model_name")
         | 
| 12 | 
            +
                columns = metrics.pop("columns").split("_")
         | 
| 13 | 
            +
                st.markdown(f"### columns: {columns}")
         | 
| 14 | 
            +
                st.markdown(f"best model {model_name}")
         | 
| 15 | 
            +
                if not display_only_accuracy:
         | 
| 16 | 
            +
                    st.json(metrics)
         | 
| 17 | 
            +
                else:
         | 
| 18 | 
            +
                    st.json({"accuracy@10": metrics["accuracy@k"]["10"]})
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            def display_metrics():
         | 
| 21 | 
            +
                display_only_accuracy = st.sidebar.checkbox("display only accuracy@10", value=True)
         | 
| 22 | 
            +
                st.markdown("## Test metrics for best validation modelon given columns")
         | 
| 23 | 
            +
                for p in nbow_results_path:
         | 
| 24 | 
            +
                    metrics = json.loads(open(p, "r").read())
         | 
| 25 | 
            +
                    display_metrics_dict(metrics, display_only_accuracy)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            display_metrics()
         | 
| 28 |  | 
| 29 | 
             
            best_results_df = pd.read_csv(config.best_tasks_path)
         | 
| 30 |  | 
