Spaces:
Runtime error
Runtime error
lambdaofgod
commited on
Commit
•
9f7559c
1
Parent(s):
89d0cf9
scatterplots
Browse files- app.py +47 -9
- data/selected_repos_representations_umap2d.parquet +3 -0
- pyproject.toml +8 -0
- text_visualization.py +72 -7
app.py
CHANGED
@@ -5,7 +5,7 @@ import re
|
|
5 |
from task_visualizations import TaskVisualizations
|
6 |
import plotly.graph_objects as go
|
7 |
from functools import partial
|
8 |
-
from text_visualization import WordCloudExtractor
|
9 |
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
@@ -108,6 +108,15 @@ def setup_repository_representations_tab(repos, representation_types):
|
|
108 |
)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
## main
|
112 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
113 |
repos = list(repos_df["repo_name"].unique())
|
@@ -119,18 +128,45 @@ task_visualizations = TaskVisualizations(
|
|
119 |
AppConfig.selected_task_counts_path,
|
120 |
AppConfig.tasks_path,
|
121 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
with gr.Tab("Explore Repository Representations"):
|
125 |
setup_repository_representations_tab(repos, representation_types)
|
126 |
with gr.Tab("Explore PapersWithCode Tasks"):
|
127 |
-
task_counts_description = """
|
128 |
-
## PapersWithCode Tasks Visualization
|
129 |
-
|
130 |
-
PapersWithCode tasks are grouped by area.
|
131 |
-
|
132 |
-
In addition to showing task distribution across the original dataset we display task counts in the repositories we selected.
|
133 |
-
""".strip()
|
134 |
|
135 |
gr.Markdown(task_counts_description)
|
136 |
|
@@ -168,4 +204,6 @@ with gr.Blocks() as demo:
|
|
168 |
outputs=[selected_repos_tasks_plot],
|
169 |
)
|
170 |
|
171 |
-
|
|
|
|
|
|
5 |
from task_visualizations import TaskVisualizations
|
6 |
import plotly.graph_objects as go
|
7 |
from functools import partial
|
8 |
+
from text_visualization import WordCloudExtractor, EmbeddingVisualizer
|
9 |
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
|
|
108 |
)
|
109 |
|
110 |
|
111 |
+
def load_embeddings_intro_description():
|
112 |
+
return """
|
113 |
+
The following plots show embeddings obtained with MPNet sentence transformer after applying 2d UMAP algorithm for dimensionality reduction.
|
114 |
+
|
115 |
+
In the first scatterplot we display PapersWithCode tasks that are colored by area.
|
116 |
+
"""
|
117 |
+
|
118 |
+
def load_embeddings_description():
|
119 |
+
return
|
120 |
## main
|
121 |
repos_df = load_repo_df(AppConfig.repo_representations_path)
|
122 |
repos = list(repos_df["repo_name"].unique())
|
|
|
128 |
AppConfig.selected_task_counts_path,
|
129 |
AppConfig.tasks_path,
|
130 |
)
|
131 |
+
display_df = pd.read_parquet("data/selected_repos_representations_umap2d.parquet")
|
132 |
+
display_df["is_task"] = display_df["representation"] == "task"
|
133 |
+
embedding_visualizer = EmbeddingVisualizer(display_df=display_df)
|
134 |
+
|
135 |
+
|
136 |
+
descriptions = {
|
137 |
+
"intro": load_embeddings_intro_description(),
|
138 |
+
|
139 |
+
"Basic representations": """Now we show the embeddings of tasks and repos, using various texts or representations.
|
140 |
+
|
141 |
+
The fact that selected code and/or dependency signatures (containing mostly repo's file names) are dissimilar from task names
|
142 |
+
should not be surprising. For our problem this illustrates the fact that these representations work poorly for retrieval.
|
143 |
+
""",
|
144 |
+
"Dependency graph based representations": """
|
145 |
+
Note the difference between embeddings of generated tasks and repository signatures (which contain them)
|
146 |
+
""",
|
147 |
+
"READMEs": """
|
148 |
+
"""
|
149 |
+
}
|
150 |
|
151 |
with gr.Blocks() as demo:
|
152 |
+
with gr.Tab("Explore Repository Embeddings"):
|
153 |
+
|
154 |
+
tab_elems = [
|
155 |
+
gr.Markdown("## Tasks by area"),
|
156 |
+
gr.Markdown(descriptions["intro"]),
|
157 |
+
gr.Plot(embedding_visualizer.make_task_area_scatterplot()),
|
158 |
+
]
|
159 |
+
|
160 |
+
embedding_plots = embedding_visualizer.make_embedding_plots(color_col="representation")
|
161 |
+
for plot_name in ["Basic representations", "Dependency graph based representations", "READMEs"]:
|
162 |
+
tab_elems.append(gr.Markdown(f"## {plot_name}"))
|
163 |
+
if descriptions.get(plot_name):
|
164 |
+
tab_elems.append(gr.Markdown(descriptions[plot_name]))
|
165 |
+
tab_elems.append(gr.Plot(embedding_plots[plot_name]))
|
166 |
+
gr.Column(tab_elems)
|
167 |
with gr.Tab("Explore Repository Representations"):
|
168 |
setup_repository_representations_tab(repos, representation_types)
|
169 |
with gr.Tab("Explore PapersWithCode Tasks"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
gr.Markdown(task_counts_description)
|
172 |
|
|
|
204 |
outputs=[selected_repos_tasks_plot],
|
205 |
)
|
206 |
|
207 |
+
gr.Plot(embedding_visualizer.make_task_area_scatterplot())
|
208 |
+
|
209 |
+
demo.launch(share=True)
|
data/selected_repos_representations_umap2d.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26f519620fb265574be6034ed18419b58fa7d345d17b9dc180a938ef3f37ecc8
|
3 |
+
size 18983840
|
pyproject.toml
CHANGED
@@ -5,7 +5,15 @@ description = "Add your description here"
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.10"
|
7 |
dependencies = [
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"pydantic>=2.9.2",
|
9 |
"scikit-learn>=1.5.2",
|
|
|
|
|
10 |
"wordcloud>=1.9.3",
|
11 |
]
|
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.10"
|
7 |
dependencies = [
|
8 |
+
"bm25s>=0.2.3",
|
9 |
+
"datasets>=3.1.0",
|
10 |
+
"gradio>=5.5.0",
|
11 |
+
"llvmlite==0.41.0",
|
12 |
+
"nbformat>=5.10.4",
|
13 |
+
"plotly>=5.24.1",
|
14 |
"pydantic>=2.9.2",
|
15 |
"scikit-learn>=1.5.2",
|
16 |
+
"sentence-transformers>=3.3.1",
|
17 |
+
"umap-learn>=0.5.7",
|
18 |
"wordcloud>=1.9.3",
|
19 |
]
|
text_visualization.py
CHANGED
@@ -4,6 +4,9 @@ import wordcloud
|
|
4 |
from pydantic import BaseModel, Field
|
5 |
import numpy as np
|
6 |
import PIL
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
class WordCloudExtractor(BaseModel):
|
@@ -21,11 +24,11 @@ class WordCloudExtractor(BaseModel):
|
|
21 |
"""
|
22 |
Extract word frequencies from a corpus using TF-IDF vectorization
|
23 |
and generate word cloud frequencies.
|
24 |
-
|
25 |
Args:
|
26 |
texts: List of text documents
|
27 |
max_features: Maximum number of words to include
|
28 |
-
|
29 |
Returns:
|
30 |
Dictionary of word frequencies suitable for WordCloud
|
31 |
"""
|
@@ -34,17 +37,79 @@ class WordCloudExtractor(BaseModel):
|
|
34 |
max_features=max_words,
|
35 |
**tfidf_params
|
36 |
)
|
37 |
-
|
38 |
# Fit and transform the texts
|
39 |
tfidf_matrix = tfidf.fit_transform(texts)
|
40 |
-
|
41 |
# Get feature names (words)
|
42 |
feature_names = tfidf.get_feature_names_out()
|
43 |
-
|
44 |
# Calculate mean TF-IDF scores across documents
|
45 |
mean_tfidf = np.array(tfidf_matrix.mean(axis=0)).flatten()
|
46 |
-
|
47 |
# Create frequency dictionary
|
48 |
frequencies = dict(zip(feature_names, mean_tfidf))
|
49 |
-
|
50 |
return frequencies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from pydantic import BaseModel, Field
|
5 |
import numpy as np
|
6 |
import PIL
|
7 |
+
import plotly.express as px
|
8 |
+
import pandas as pd
|
9 |
+
import plotly.graph_objects as go
|
10 |
|
11 |
|
12 |
class WordCloudExtractor(BaseModel):
|
|
|
24 |
"""
|
25 |
Extract word frequencies from a corpus using TF-IDF vectorization
|
26 |
and generate word cloud frequencies.
|
27 |
+
|
28 |
Args:
|
29 |
texts: List of text documents
|
30 |
max_features: Maximum number of words to include
|
31 |
+
|
32 |
Returns:
|
33 |
Dictionary of word frequencies suitable for WordCloud
|
34 |
"""
|
|
|
37 |
max_features=max_words,
|
38 |
**tfidf_params
|
39 |
)
|
40 |
+
|
41 |
# Fit and transform the texts
|
42 |
tfidf_matrix = tfidf.fit_transform(texts)
|
43 |
+
|
44 |
# Get feature names (words)
|
45 |
feature_names = tfidf.get_feature_names_out()
|
46 |
+
|
47 |
# Calculate mean TF-IDF scores across documents
|
48 |
mean_tfidf = np.array(tfidf_matrix.mean(axis=0)).flatten()
|
49 |
+
|
50 |
# Create frequency dictionary
|
51 |
frequencies = dict(zip(feature_names, mean_tfidf))
|
52 |
+
|
53 |
return frequencies
|
54 |
+
|
55 |
+
|
56 |
+
class EmbeddingVisualizer(BaseModel):
|
57 |
+
display_df: pd.DataFrame
|
58 |
+
plot_kwargs: Dict[str, Any] = Field(default_factory=lambda: dict(
|
59 |
+
range_x=(3, 16.5),
|
60 |
+
range_y=(-3, 11),
|
61 |
+
width=1200,
|
62 |
+
height=800,
|
63 |
+
x="x",
|
64 |
+
y="y",
|
65 |
+
template="plotly_white",
|
66 |
+
))
|
67 |
+
|
68 |
+
def make_embedding_plots(self, color_col=None, hover_data=["name"], filter_df_fn=None):
|
69 |
+
"""
|
70 |
+
plots Plotly scatterplot of UMAP embeddings
|
71 |
+
"""
|
72 |
+
display_df = self.display_df
|
73 |
+
if filter_df_fn is not None:
|
74 |
+
display_df = filter_df_fn(display_df)
|
75 |
+
|
76 |
+
display_df = display_df.sort_values("representation", ascending=False)
|
77 |
+
readme_df = display_df[display_df["representation"].isin(["readme", "generated_readme", "task"])]
|
78 |
+
raw_df = display_df[display_df["representation"].isin(["dependency_signature", "selected_code", "task"])]
|
79 |
+
dependency_df = display_df[display_df["representation"].isin(["repository_signature", "dependency_signature", "generated_tasks", "task"])]
|
80 |
+
|
81 |
+
plots = [
|
82 |
+
self._make_task_and_repos_scatterplot(df, hover_data, color_col)
|
83 |
+
for df in [readme_df, raw_df, dependency_df]
|
84 |
+
]
|
85 |
+
return dict(zip(["READMEs", "Basic representations", "Dependency graph based representations"], plots))
|
86 |
+
|
87 |
+
def _make_task_and_repos_scatterplot(self, df, hover_data, color_col):
|
88 |
+
# Set opacity and symbol based on is_task
|
89 |
+
df['size'] = df['is_task'].apply(lambda x: 0.25 if x else 0.1)
|
90 |
+
df['symbol'] = df['is_task'].apply(int)
|
91 |
+
|
92 |
+
combined_fig = px.scatter(
|
93 |
+
df,
|
94 |
+
hover_name="name",
|
95 |
+
hover_data=hover_data,
|
96 |
+
color=color_col,
|
97 |
+
color_discrete_sequence=px.colors.qualitative.Set1,
|
98 |
+
opacity=0.5,
|
99 |
+
**self.plot_kwargs
|
100 |
+
)
|
101 |
+
combined_fig.data = combined_fig.data[::-1]
|
102 |
+
|
103 |
+
return combined_fig
|
104 |
+
|
105 |
+
def make_task_area_scatterplot(self, n_areas=6):
|
106 |
+
display_df = self.display_df
|
107 |
+
displayed_tasks_df = display_df[display_df["representation"] == "task"].sort_values("representation")
|
108 |
+
displayed_tasks_df = displayed_tasks_df.merge(pd.read_csv("data/paperswithcode_tasks.csv"), left_on="name", right_on="task")
|
109 |
+
displayed_tasks_df= displayed_tasks_df[displayed_tasks_df["area"].isin(displayed_tasks_df["area"].value_counts().head(n_areas).index)]
|
110 |
+
tasks_fig = px.scatter(displayed_tasks_df, color="area", hover_data=["name"], opacity=0.7, **self.plot_kwargs)
|
111 |
+
print("N DISPLAYED TASKS", len(displayed_tasks_df))
|
112 |
+
return tasks_fig
|
113 |
+
|
114 |
+
class Config:
|
115 |
+
arbitrary_types_allowed = True
|