Spaces:
Build error
Build error
Jeremy Hummel
commited on
Commit
·
0a72300
1
Parent(s):
cda6f07
Adds options for generation
Browse files- app.py +10 -3
- visualize.py +54 -17
app.py
CHANGED
|
@@ -32,12 +32,19 @@ network_choices = [
|
|
| 32 |
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfacesu-1024x1024.pkl'
|
| 33 |
]
|
| 34 |
|
|
|
|
| 35 |
demo = gr.Interface(
|
| 36 |
fn=visualize,
|
| 37 |
-
inputs=[
|
|
|
|
|
|
|
| 38 |
gr.Dropdown(choices=network_choices, value=network_choices[0], label="Network"),
|
| 39 |
-
gr.Slider(minimum=0.0, value=1.0, maximum=2.0,
|
| 40 |
-
gr.Slider(minimum=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
outputs=gr.Video()
|
| 42 |
)
|
| 43 |
demo.launch()
|
|
|
|
| 32 |
'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-metfacesu-1024x1024.pkl'
|
| 33 |
]
|
| 34 |
|
| 35 |
+
|
| 36 |
demo = gr.Interface(
|
| 37 |
fn=visualize,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.Audio(label="Audio File"),
|
| 40 |
+
# gr.File(),
|
| 41 |
gr.Dropdown(choices=network_choices, value=network_choices[0], label="Network"),
|
| 42 |
+
gr.Slider(minimum=0.0, value=1.0, maximum=2.0, label="Truncation"),
|
| 43 |
+
gr.Slider(minimum=0.0, value=0.25, maximum=2.0, label="Tempo Sensitivity"),
|
| 44 |
+
gr.Slider(minimum=0.0, value=0.5, maximum=2.0, label="Jitter"),
|
| 45 |
+
gr.Slider(minimum=64, value=512, maximum=1024, step=64, label="Frame Length (samples)"),
|
| 46 |
+
gr.Slider(minimum=1, value=300, maximum=600, step=1, label="Max Duration (seconds)"),
|
| 47 |
+
],
|
| 48 |
outputs=gr.Video()
|
| 49 |
)
|
| 50 |
demo.launch()
|
visualize.py
CHANGED
|
@@ -3,32 +3,63 @@ import numpy as np
|
|
| 3 |
import moviepy.editor as mpy
|
| 4 |
import random
|
| 5 |
import torch
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
import stylegan3
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
def visualize(audio_file,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# print(audio_file, truncation, network)
|
| 12 |
# print(args)
|
| 13 |
# print(kwargs)
|
| 14 |
|
| 15 |
if audio_file:
|
| 16 |
print('\nReading audio \n')
|
| 17 |
-
|
|
|
|
| 18 |
else:
|
| 19 |
raise ValueError("you must enter an audio file name in the --song argument")
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
duration = None
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
tempo_sensitivity = 0.25
|
| 28 |
tempo_sensitivity = tempo_sensitivity * frame_length / 512
|
| 29 |
|
| 30 |
-
jitter = 0.5
|
| 31 |
-
|
| 32 |
outfile = "output.mp4"
|
| 33 |
|
| 34 |
# Load pre-trained model
|
|
@@ -46,7 +77,7 @@ def visualize(audio_file, network, truncation, batch_size, *args, **kwargs):
|
|
| 46 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 47 |
|
| 48 |
#create spectrogram
|
| 49 |
-
spec = librosa.feature.melspectrogram(y=
|
| 50 |
|
| 51 |
#get mean power at each time point
|
| 52 |
specm=np.mean(spec,axis=0)
|
|
@@ -143,9 +174,6 @@ def visualize(audio_file, network, truncation, batch_size, *args, **kwargs):
|
|
| 143 |
frames = []
|
| 144 |
for i in tqdm(range(noise_vectors.shape[0] // batch_size)):
|
| 145 |
|
| 146 |
-
#print progress
|
| 147 |
-
pass
|
| 148 |
-
|
| 149 |
noise_vector=noise_vectors[i*batch_size:(i+1)*batch_size]
|
| 150 |
|
| 151 |
c = None # class labels (not used in this example)
|
|
@@ -160,15 +188,24 @@ def visualize(audio_file, network, truncation, batch_size, *args, **kwargs):
|
|
| 160 |
|
| 161 |
|
| 162 |
#Save video
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
if duration:
|
| 166 |
aud.duration = duration
|
| 167 |
|
| 168 |
-
fps =
|
| 169 |
clip = mpy.ImageSequenceClip(frames, fps=fps)
|
| 170 |
clip = clip.set_audio(aud)
|
| 171 |
-
clip.write_videofile(outfile, audio_codec='aac', ffmpeg_params=[
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
return outfile
|
|
|
|
| 3 |
import moviepy.editor as mpy
|
| 4 |
import random
|
| 5 |
import torch
|
| 6 |
+
from moviepy.audio.AudioClip import AudioArrayClip
|
| 7 |
from tqdm import tqdm
|
| 8 |
import stylegan3
|
| 9 |
|
| 10 |
+
target_sr = 22050
|
| 11 |
|
| 12 |
+
def visualize(audio_file,
|
| 13 |
+
network,
|
| 14 |
+
truncation,
|
| 15 |
+
tempo_sensitivity,
|
| 16 |
+
jitter,
|
| 17 |
+
frame_length,
|
| 18 |
+
duration,
|
| 19 |
+
):
|
| 20 |
# print(audio_file, truncation, network)
|
| 21 |
# print(args)
|
| 22 |
# print(kwargs)
|
| 23 |
|
| 24 |
if audio_file:
|
| 25 |
print('\nReading audio \n')
|
| 26 |
+
# audio, sr = librosa.load(audio_file.name)
|
| 27 |
+
sr, audio = audio_file
|
| 28 |
else:
|
| 29 |
raise ValueError("you must enter an audio file name in the --song argument")
|
| 30 |
|
| 31 |
+
print(sr)
|
| 32 |
+
print(audio.dtype)
|
| 33 |
+
print(audio.shape)
|
| 34 |
+
if audio.shape[0] < duration * sr:
|
| 35 |
+
duration = None
|
| 36 |
+
else:
|
| 37 |
+
frames = duration * sr
|
| 38 |
+
audio = audio[:frames]
|
| 39 |
+
|
| 40 |
+
print(audio.dtype)
|
| 41 |
+
print(audio.shape)
|
| 42 |
+
if audio.dtype == np.int16:
|
| 43 |
+
audio = audio.astype(np.float32, order='C') / 32768.0
|
| 44 |
+
audio = audio.T
|
| 45 |
+
audio = librosa.to_mono(audio)
|
| 46 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr, res_type="kaiser_best")
|
| 47 |
+
print(audio.dtype)
|
| 48 |
+
print(audio.shape)
|
| 49 |
+
|
| 50 |
+
if audio.shape[0] / target_sr < duration:
|
| 51 |
+
duration = None
|
| 52 |
+
else:
|
| 53 |
+
frames = duration * sr
|
| 54 |
+
audio = audio[:frames]
|
| 55 |
|
|
|
|
| 56 |
|
| 57 |
+
# TODO:
|
| 58 |
+
batch_size = 1
|
| 59 |
+
resolution = 512
|
| 60 |
|
|
|
|
| 61 |
tempo_sensitivity = tempo_sensitivity * frame_length / 512
|
| 62 |
|
|
|
|
|
|
|
| 63 |
outfile = "output.mp4"
|
| 64 |
|
| 65 |
# Load pre-trained model
|
|
|
|
| 77 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 78 |
|
| 79 |
#create spectrogram
|
| 80 |
+
spec = librosa.feature.melspectrogram(y=audio, sr=target_sr, n_mels=512,fmax=8000, hop_length=frame_length)
|
| 81 |
|
| 82 |
#get mean power at each time point
|
| 83 |
specm=np.mean(spec,axis=0)
|
|
|
|
| 174 |
frames = []
|
| 175 |
for i in tqdm(range(noise_vectors.shape[0] // batch_size)):
|
| 176 |
|
|
|
|
|
|
|
|
|
|
| 177 |
noise_vector=noise_vectors[i*batch_size:(i+1)*batch_size]
|
| 178 |
|
| 179 |
c = None # class labels (not used in this example)
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
#Save video
|
| 191 |
+
sr, audio = audio_file
|
| 192 |
+
if audio.dtype == np.int16:
|
| 193 |
+
audio = audio.astype(np.float32, order='C') / 32768.0
|
| 194 |
+
with AudioArrayClip(audio, sr) as aud: # from a numeric array
|
| 195 |
+
pass # Close is implicitly performed by context manager.
|
| 196 |
|
| 197 |
+
if duration is not None:
|
| 198 |
aud.duration = duration
|
| 199 |
|
| 200 |
+
fps = target_sr / frame_length
|
| 201 |
clip = mpy.ImageSequenceClip(frames, fps=fps)
|
| 202 |
clip = clip.set_audio(aud)
|
| 203 |
+
clip.write_videofile(outfile, audio_codec='aac', ffmpeg_params=[
|
| 204 |
+
# "-vf", "scale=-1:2160:flags=lanczos",
|
| 205 |
+
"-bf", "2",
|
| 206 |
+
"-g", f"{fps/2}",
|
| 207 |
+
"-crf", "18",
|
| 208 |
+
"-movflags", "faststart"
|
| 209 |
+
])
|
| 210 |
|
| 211 |
return outfile
|