IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
31.8 kB
// Copyright (c) Facebook, Inc. and its affiliates.
// modified from
// https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/dcn/src/deform_conv_cuda.cpp
// Original license: Apache 2.0
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
// Original license: Apache 2.0
#include <torch/types.h>
#include "deform_conv.h"
#include <cmath>
#include <vector>
namespace detectron2 {
void deformable_im2col(
const at::Tensor data_im,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor data_col);
void deformable_col2im(
const at::Tensor data_col,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor grad_im);
void deformable_col2im_coord(
const at::Tensor data_col,
const at::Tensor data_im,
const at::Tensor data_offset,
const int channels,
const int height,
const int width,
const int ksize_h,
const int ksize_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int parallel_imgs,
const int deformable_group,
at::Tensor grad_offset);
void modulated_deformable_im2col_cuda(
const at::Tensor data_im,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kenerl_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor data_col);
void modulated_deformable_col2im_cuda(
const at::Tensor data_col,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kenerl_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor grad_im);
void modulated_deformable_col2im_coord_cuda(
const at::Tensor data_col,
const at::Tensor data_im,
const at::Tensor data_offset,
const at::Tensor data_mask,
const int batch_size,
const int channels,
const int height_im,
const int width_im,
const int height_col,
const int width_col,
const int kernel_h,
const int kenerl_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int deformable_group,
at::Tensor grad_offset,
at::Tensor grad_mask);
void shape_check(
at::Tensor input,
at::Tensor offset,
at::Tensor* gradOutput,
at::Tensor weight,
int kH,
int kW,
int dH,
int dW,
int padH,
int padW,
int dilationH,
int dilationW,
int group,
int deformable_group) {
TORCH_CHECK(
weight.ndimension() == 4,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s",
weight.ndimension());
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
TORCH_CHECK(
kW > 0 && kH > 0,
"kernel size should be greater than zero, but got kH: %d kW: %d",
kH,
kW);
TORCH_CHECK(
(weight.size(2) == kH && weight.size(3) == kW),
"kernel size should be consistent with weight, ",
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d",
kH,
kW,
weight.size(2),
weight.size(3));
TORCH_CHECK(
dW > 0 && dH > 0,
"stride should be greater than zero, but got dH: %d dW: %d",
dH,
dW);
TORCH_CHECK(
dilationW > 0 && dilationH > 0,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d",
dilationH,
dilationW);
int ndim = input.ndimension();
int dimf = 0;
int dimh = 1;
int dimw = 2;
if (ndim == 4) {
dimf++;
dimh++;
dimw++;
}
TORCH_CHECK(
ndim == 3 || ndim == 4,
"3D or 4D input tensor expected but got: %s",
ndim);
long nInputPlane = weight.size(1) * group;
long inputHeight = input.size(dimh);
long inputWidth = input.size(dimw);
long nOutputPlane = weight.size(0);
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
TORCH_CHECK(
nInputPlane % deformable_group == 0,
"input channels must divide deformable group size");
if (outputWidth < 1 || outputHeight < 1)
AT_ERROR(
"Given input size: (%ld x %ld x %ld). "
"Calculated output size: (%ld x %ld x %ld). Output size is too small",
nInputPlane,
inputHeight,
inputWidth,
nOutputPlane,
outputHeight,
outputWidth);
TORCH_CHECK(
input.size(1) == nInputPlane,
"invalid number of input planes, expected: %d, but got: %d",
nInputPlane,
input.size(1));
TORCH_CHECK(
(inputHeight + 2 * padH >= kH && inputWidth + 2 * padW >= kW),
"input image is smaller than kernel");
TORCH_CHECK(
(offset.size(2) == outputHeight && offset.size(3) == outputWidth),
"invalid spatial size of offset, expected height: %d width: %d, but "
"got height: %d width: %d",
outputHeight,
outputWidth,
offset.size(2),
offset.size(3));
TORCH_CHECK(
(offset.size(1) == deformable_group * 2 * kH * kW),
"invalid number of channels of offset");
if (gradOutput != NULL) {
TORCH_CHECK(
gradOutput->size(dimf) == nOutputPlane,
"invalid number of gradOutput planes, expected: %d, but got: %d",
nOutputPlane,
gradOutput->size(dimf));
TORCH_CHECK(
(gradOutput->size(dimh) == outputHeight &&
gradOutput->size(dimw) == outputWidth),
"invalid size of gradOutput, expected height: %d width: %d , but "
"got height: %d width: %d",
outputHeight,
outputWidth,
gradOutput->size(dimh),
gradOutput->size(dimw));
}
}
int deform_conv_forward_cuda(
at::Tensor input,
at::Tensor weight,
at::Tensor offset,
at::Tensor output,
at::Tensor columns,
at::Tensor ones,
int kW,
int kH,
int dW,
int dH,
int padW,
int padH,
int dilationW,
int dilationH,
int group,
int deformable_group,
int im2col_step) {
// todo: resize columns to include im2col: done
// todo: add im2col_step as input
// todo: add new output buffer and transpose it to output (or directly
// transpose output) todo: possibly change data indexing because of
// parallel_imgs
shape_check(
input,
offset,
NULL,
weight,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
group,
deformable_group);
input = input.contiguous();
offset = offset.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input.unsqueeze_(0);
offset.unsqueeze_(0);
}
// todo: assert batchsize dividable by im2col_step
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
output = output.view(
{batchSize / im2col_step,
im2col_step,
nOutputPlane,
outputHeight,
outputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
ones = at::ones({outputHeight, outputWidth}, input.options());
}
input = input.view(
{batchSize / im2col_step,
im2col_step,
nInputPlane,
inputHeight,
inputWidth});
offset = offset.view(
{batchSize / im2col_step,
im2col_step,
deformable_group * 2 * kH * kW,
outputHeight,
outputWidth});
at::Tensor output_buffer = at::zeros(
{batchSize / im2col_step,
nOutputPlane,
im2col_step * outputHeight,
outputWidth},
output.options());
output_buffer = output_buffer.view(
{output_buffer.size(0),
group,
output_buffer.size(1) / group,
output_buffer.size(2),
output_buffer.size(3)});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(
input[elt],
offset[elt],
nInputPlane,
inputHeight,
inputWidth,
kH,
kW,
padH,
padW,
dH,
dW,
dilationH,
dilationW,
im2col_step,
deformable_group,
columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view(
{group,
weight.size(0) / group,
weight.size(1),
weight.size(2),
weight.size(3)});
for (int g = 0; g < group; g++) {
output_buffer[elt][g] = output_buffer[elt][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output_buffer[elt][g]);
}
}
output_buffer = output_buffer.view(
{output_buffer.size(0),
output_buffer.size(1) * output_buffer.size(2),
output_buffer.size(3),
output_buffer.size(4)});
output_buffer = output_buffer.view(
{batchSize / im2col_step,
nOutputPlane,
im2col_step,
outputHeight,
outputWidth});
output_buffer.transpose_(1, 2);
output.copy_(output_buffer);
output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
output = output.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_input_cuda(
at::Tensor input,
at::Tensor offset,
at::Tensor gradOutput,
at::Tensor gradInput,
at::Tensor gradOffset,
at::Tensor weight,
at::Tensor columns,
int kW,
int kH,
int dW,
int dH,
int padW,
int padH,
int dilationW,
int dilationH,
int group,
int deformable_group,
int im2col_step) {
shape_check(
input,
offset,
&gradOutput,
weight,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
group,
deformable_group);
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view({1, input.size(0), input.size(1), input.size(2)});
offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
// change order of grad output
gradOutput = gradOutput.view(
{batchSize / im2col_step,
im2col_step,
nOutputPlane,
outputHeight,
outputWidth});
gradOutput.transpose_(1, 2);
gradInput = gradInput.view(
{batchSize / im2col_step,
im2col_step,
nInputPlane,
inputHeight,
inputWidth});
input = input.view(
{batchSize / im2col_step,
im2col_step,
nInputPlane,
inputHeight,
inputWidth});
gradOffset = gradOffset.view(
{batchSize / im2col_step,
im2col_step,
deformable_group * 2 * kH * kW,
outputHeight,
outputWidth});
offset = offset.view(
{batchSize / im2col_step,
im2col_step,
deformable_group * 2 * kH * kW,
outputHeight,
outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
// divide into groups
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view(
{group,
weight.size(0) / group,
weight.size(1),
weight.size(2),
weight.size(3)});
gradOutput = gradOutput.view(
{gradOutput.size(0),
group,
gradOutput.size(1) / group,
gradOutput.size(2),
gradOutput.size(3),
gradOutput.size(4)});
for (int g = 0; g < group; g++) {
columns[g] = columns[g].addmm_(
weight[g].flatten(1).transpose(0, 1),
gradOutput[elt][g].flatten(1),
0.0f,
1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradOutput = gradOutput.view(
{gradOutput.size(0),
gradOutput.size(1) * gradOutput.size(2),
gradOutput.size(3),
gradOutput.size(4),
gradOutput.size(5)});
deformable_col2im_coord(
columns,
input[elt],
offset[elt],
nInputPlane,
inputHeight,
inputWidth,
kH,
kW,
padH,
padW,
dH,
dW,
dilationH,
dilationW,
im2col_step,
deformable_group,
gradOffset[elt]);
deformable_col2im(
columns,
offset[elt],
nInputPlane,
inputHeight,
inputWidth,
kH,
kW,
padH,
padW,
dH,
dW,
dilationH,
dilationW,
im2col_step,
deformable_group,
gradInput[elt]);
}
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
gradOffset = gradOffset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
gradOffset =
gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_parameters_cuda(
at::Tensor input,
at::Tensor offset,
at::Tensor gradOutput,
at::Tensor gradWeight, // at::Tensor gradBias,
at::Tensor columns,
at::Tensor ones,
int kW,
int kH,
int dW,
int dH,
int padW,
int padH,
int dilationW,
int dilationH,
int group,
int deformable_group,
float scale,
int im2col_step) {
// todo: transpose and reshape outGrad
// todo: reshape columns
// todo: add im2col_step as input
shape_check(
input,
offset,
&gradOutput,
gradWeight,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
group,
deformable_group);
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view(
at::IntList({1, input.size(0), input.size(1), input.size(2)}));
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = gradWeight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
gradOutput = gradOutput.view(
{batchSize / im2col_step,
im2col_step,
nOutputPlane,
outputHeight,
outputWidth});
gradOutput.transpose_(1, 2);
at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
gradOutputBuffer = gradOutputBuffer.view(
{batchSize / im2col_step,
nOutputPlane,
im2col_step,
outputHeight,
outputWidth});
gradOutputBuffer.copy_(gradOutput);
// gradOutput is not contiguous, so we do reshape (instead of view) next
gradOutputBuffer = gradOutputBuffer.reshape(
{batchSize / im2col_step,
nOutputPlane,
im2col_step * outputHeight,
outputWidth});
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view(
{batchSize / im2col_step,
im2col_step,
nInputPlane,
inputHeight,
inputWidth});
offset = offset.view(
{batchSize / im2col_step,
im2col_step,
deformable_group * 2 * kH * kW,
outputHeight,
outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(
input[elt],
offset[elt],
nInputPlane,
inputHeight,
inputWidth,
kH,
kW,
padH,
padW,
dH,
dW,
dilationH,
dilationW,
im2col_step,
deformable_group,
columns);
// divide into group
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0),
group,
gradOutputBuffer.size(1) / group,
gradOutputBuffer.size(2),
gradOutputBuffer.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
gradWeight = gradWeight.view(
{group,
gradWeight.size(0) / group,
gradWeight.size(1),
gradWeight.size(2),
gradWeight.size(3)});
for (int g = 0; g < group; g++) {
gradWeight[g] = gradWeight[g]
.flatten(1)
.addmm_(
gradOutputBuffer[elt][g].flatten(1),
columns[g].transpose(1, 0),
1.0,
scale)
.view_as(gradWeight[g]);
}
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0),
gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
gradOutputBuffer.size(3),
gradOutputBuffer.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradWeight = gradWeight.view(
{gradWeight.size(0) * gradWeight.size(1),
gradWeight.size(2),
gradWeight.size(3),
gradWeight.size(4)});
}
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
}
return 1;
}
void modulated_deform_conv_cuda_forward(
at::Tensor input,
at::Tensor weight,
at::Tensor bias,
at::Tensor ones,
at::Tensor offset,
at::Tensor mask,
at::Tensor output,
at::Tensor columns,
int kernel_h,
int kernel_w,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
const int dilation_h,
const int dilation_w,
const int group,
const int deformable_group,
const bool with_bias) {
shape_check(
input,
offset,
NULL,
weight,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w,
group,
deformable_group);
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_,
kernel_w,
kernel_h_,
kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR(
"Input shape and kernel channels wont match: (%d vs %d).",
channels,
channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
// mask shape check
TORCH_CHECK(
(mask.size(2) == height_out && mask.size(3) == width_out),
"invalid spatial size of mask, expected height: %d width: %d, but "
"got height: %d width: %d",
height_out,
width_out,
mask.size(2),
mask.size(3));
TORCH_CHECK(
(mask.size(1) == deformable_group * kernel_h * kernel_w),
"invalid number of channels of mask");
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
// resize output
output = output.view({batch, channels_out, height_out, width_out}).zero_();
// resize temporary columns
columns = at::zeros(
{channels * kernel_h * kernel_w, 1 * height_out * width_out},
input.options());
output = output.view(
{output.size(0),
group,
output.size(1) / group,
output.size(2),
output.size(3)});
for (int b = 0; b < batch; b++) {
modulated_deformable_im2col_cuda(
input[b],
offset[b],
mask[b],
1,
channels,
height,
width,
height_out,
width_out,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
deformable_group,
columns);
// divide into group
weight = weight.view(
{group,
weight.size(0) / group,
weight.size(1),
weight.size(2),
weight.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
for (int g = 0; g < group; g++) {
output[b][g] = output[b][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output[b][g]);
}
weight = weight.view(
{weight.size(0) * weight.size(1),
weight.size(2),
weight.size(3),
weight.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
output = output.view(
{output.size(0),
output.size(1) * output.size(2),
output.size(3),
output.size(4)});
if (with_bias) {
output += bias.view({1, bias.size(0), 1, 1});
}
}
void modulated_deform_conv_cuda_backward(
at::Tensor input,
at::Tensor weight,
at::Tensor bias,
at::Tensor ones,
at::Tensor offset,
at::Tensor mask,
at::Tensor columns,
at::Tensor grad_input,
at::Tensor grad_weight,
at::Tensor grad_bias,
at::Tensor grad_offset,
at::Tensor grad_mask,
at::Tensor grad_output,
int kernel_h,
int kernel_w,
int stride_h,
int stride_w,
int pad_h,
int pad_w,
int dilation_h,
int dilation_w,
int group,
int deformable_group,
const bool with_bias) {
shape_check(
input,
offset,
&grad_output,
weight,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w,
group,
deformable_group);
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_,
kernel_w,
kernel_h_,
kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR(
"Input shape and kernel channels wont match: (%d vs %d).",
channels,
channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
// mask shape check
TORCH_CHECK(
(mask.size(2) == height_out && mask.size(3) == width_out),
"invalid spatial size of mask, expected height: %d width: %d, but "
"got height: %d width: %d",
height_out,
width_out,
mask.size(2),
mask.size(3));
TORCH_CHECK(
(mask.size(1) == deformable_group * kernel_h * kernel_w),
"invalid number of channels of mask");
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
grad_input = grad_input.view({batch, channels, height, width});
columns = at::zeros(
{channels * kernel_h * kernel_w, height_out * width_out},
input.options());
grad_output = grad_output.view(
{grad_output.size(0),
group,
grad_output.size(1) / group,
grad_output.size(2),
grad_output.size(3)});
for (int b = 0; b < batch; b++) {
// divide int group
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view(
{group,
weight.size(0) / group,
weight.size(1),
weight.size(2),
weight.size(3)});
for (int g = 0; g < group; g++) {
columns[g].addmm_(
weight[g].flatten(1).transpose(0, 1),
grad_output[b][g].flatten(1),
0.0f,
1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
weight = weight.view(
{weight.size(0) * weight.size(1),
weight.size(2),
weight.size(3),
weight.size(4)});
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cuda(
columns,
input[b],
offset[b],
mask[b],
1,
channels,
height,
width,
height_out,
width_out,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
deformable_group,
grad_offset[b],
grad_mask[b]);
// gradient w.r.t. input data
modulated_deformable_col2im_cuda(
columns,
offset[b],
mask[b],
1,
channels,
height,
width,
height_out,
width_out,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
deformable_group,
grad_input[b]);
// gradient w.r.t. weight, dWeight should accumulate across the batch and
// group
modulated_deformable_im2col_cuda(
input[b],
offset[b],
mask[b],
1,
channels,
height,
width,
height_out,
width_out,
kernel_h,
kernel_w,
pad_h,
pad_w,
stride_h,
stride_w,
dilation_h,
dilation_w,
deformable_group,
columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
grad_weight = grad_weight.view(
{group,
grad_weight.size(0) / group,
grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3)});
if (with_bias)
grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
for (int g = 0; g < group; g++) {
grad_weight[g] =
grad_weight[g]
.flatten(1)
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
.view_as(grad_weight[g]);
if (with_bias) {
grad_bias[g] =
grad_bias[g]
.view({-1, 1})
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
.view(-1);
}
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
grad_weight = grad_weight.view(
{grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3),
grad_weight.size(4)});
if (with_bias)
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
}
grad_output = grad_output.view(
{grad_output.size(0) * grad_output.size(1),
grad_output.size(2),
grad_output.size(3),
grad_output.size(4)});
}
} // namespace detectron2