spacee / app.py
lakxs's picture
Upload app.py
bd86d44
raw
history blame
7.06 kB
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"mattmdjaga/segformer_b2_clothes"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"mattmdjaga/segformer_b2_clothes"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[204, 87, 92],
[112, 185, 212],
[45, 189, 106],
[234, 123, 67],
[78, 56, 123],
[210, 32, 89],
[90, 180, 56],
[155, 102, 200],
[33, 147, 176],
[255, 183, 76],
[67, 123, 89],
[190, 60, 45],
[134, 112, 200],
[56, 45, 189],
[200, 56, 123],
[87, 92, 204],
[120, 56, 123],
[45, 78, 123]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
# demo = gr.Interface(fn=sepia,
# inputs=gr.Image(shape=(400, 600)),
# outputs=['plot'],
# examples=["person-1", "person-2", "person-3", "person-4", "person-5"],
# allow_flagging='never')
demo = gr.Interface(fn=sepia,
inputs=gr.Image(), # Remove the 'shape' argument here
outputs=['plot'],
examples=[
"person-1.jpg",
"person-2.jpg",
"person-3.jpg",
"person-4.jpg",
"person-5.jpg"
],
allow_flagging='never')
demo.launch()
#
# import gradio as gr
# from matplotlib import gridspec
# import matplotlib.pyplot as plt
# import numpy as np
# from PIL import Image
# import tensorflow as tf
# from transformers import SegformerImageProcessor, TFSegformerForSemanticSegmentation
#
# # SegformerImageProcessor ๋ฐ ๋ชจ๋ธ์„ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค.
# processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
# model = TFSegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
#
# def ade_palette():
# """ADE20K palette that maps each class to RGB values."""
# return [
# [204, 87, 92],
# [112, 185, 212],
# [45, 189, 106],
# [234, 123, 67],
# [78, 56, 123],
# [210, 32, 89],
# [90, 180, 56],
# [155, 102, 200],
# [33, 147, 176],
# [255, 183, 76],
# [67, 123, 89],
# [190, 60, 45],
# [134, 112, 200],
# [56, 45, 189],
# [200, 56, 123],
# [87, 92, 204],
# [120, 56, 123],
# [45, 78, 123]
# ]
#
# labels_list = []
#
# with open(r'labels.txt', 'r') as fp:
# for line in fp:
# labels_list.append(line[:-1])
#
# colormap = np.asarray(ade_palette())
#
# def label_to_color_image(label):
# if label.ndim != 2:
# raise ValueError("Expect 2-D input label")
#
# if np.max(label) >= len(colormap):
# raise ValueError("label value too large.")
# return colormap[label]
#
# def draw_plot(pred_img, seg):
# fig = plt.figure(figsize=(20, 15))
#
# grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
#
# plt.subplot(grid_spec[0])
# plt.imshow(pred_img)
# plt.axis('off')
# LABEL_NAMES = np.asarray(labels_list)
# FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
# FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
#
# unique_labels = np.unique(seg.numpy().astype("uint8"))
# ax = plt.subplot(grid_spec[1])
# plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
# ax.yaxis.tick_right()
# plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
# plt.xticks([], [])
# ax.tick_params(width=0.0, labelsize=25)
# return fig
#
# def sepia(input_img):
# input_img = Image.fromarray(input_img)
#
# inputs = processor(images=input_img, return_tensors="tf")
# outputs = model(**inputs)
# logits = outputs.logits
#
# logits = tf.transpose(logits, [0, 2, 3, 1])
# logits = tf.image.resize(
# logits, input_img.size[::-1]
# ) # We reverse the shape of `image` because `image.size` returns width and height.
# seg = tf.math.argmax(logits, axis=-1)[0]
#
# color_seg = np.zeros(
# (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
# ) # height, width, 3
# for label, color in enumerate(colormap):
# color_seg[seg.numpy() == label, :] = color
#
# # Show image + mask
# pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
# pred_img = pred_img.astype(np.uint8)
#
# fig = draw_plot(pred_img, seg)
# return fig
#
# demo = gr.Interface(fn=sepia,
# inputs=gr.inputs.Image(shape=(400, 600)),
# outputs='plot',
# examples=["person-1", "person-2", "person-3", "person-4", "person-5"],
# allow_flagging='never')
#
# demo.launch()