RedmindGPT / app.py
lakshmivairamani's picture
Update app.py
69d5ddf verified
raw
history blame
8.71 kB
import os
import requests
import gradio as gr
from langchain.memory import ConversationBufferMemory # Updated import
from langchain import OpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain.agents import create_tool_calling_agent, AgentExecutor, Tool
from langchain.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from PyPDF2 import PdfReader
# Initialize the memory
memory = ConversationBufferMemory(return_messages=True, memory_key="chat_history")
open_api_key_token = os.environ['OPEN_AI_API']
os.environ['OPENAI_API_KEY'] = open_api_key_token
db_uri = 'mysql+mysqlconnector://redmindgen:51(xtzb0z_P8wRkowkDGQe@188.166.133.137:3306/collegedb'
#db_uri = 'postgresql+psycopg2://postgres:postpass@193.203.162.39:5432/warehouse'
# Database setup
db = SQLDatabase.from_uri(db_uri)
# LLM setup
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
# Define the SQL query generation tool
template_query_generation = """Based on the table schema below, write a SQL query that would answer the user's question:
{schema}
Question: {question}
SQL Query:"""
prompt_query_generation = ChatPromptTemplate.from_template(template_query_generation)
def get_schema(_):
return db.get_table_info()
def generate_sql_query(question):
schema = get_schema(None)
input_data = {"question": question}
sql_chain = (RunnablePassthrough.assign(schema=get_schema)
| prompt_query_generation
| llm.bind(stop="\n SQL Result:")
| StrOutputParser()
)
return sql_chain.invoke(input_data)
def run_query(query):
return db.run(query)
# Define the database query tool
def database_tool(question):
sql_query = generate_sql_query(question)
return run_query(sql_query)
# Define the ASN API data retrieval tool
def get_ASN_data(asn_id):
base_url = "http://193.203.162.39:9090/nxt-wms/trnHeader?"
if asn_id is None or asn_id.strip() == "":
asn_id = "ASN24070100015"
complete_url = f"{base_url}branchMaster.id=343&transactionUid={asn_id}&userId=164&transactionType=ASN"
try:
response = requests.get(complete_url)
data = response.json()
print (data)
response.raise_for_status() # Raises an HTTPError if the response was an error
if 'result' in data and 'content' in data['result'] and data['result']['content']:
# Assuming the first content item and first party item are what we're interested in
content = data['result']['content'][0]
trnHeaderAsn = content['trnHeaderAsn']
party = content['party'][0]
# Extracting the required information
transactionUid = trnHeaderAsn['transactionUid']
customerOrderNo = trnHeaderAsn.get('customerOrderNo', 'N/A') # Using .get() for potentially missing keys
orderDate = trnHeaderAsn.get('orderDate', 'N/A')
customerInvoiceNo = trnHeaderAsn.get('customerInvoiceNo', 'N/A')
invoiceDate = trnHeaderAsn.get('invoiceDate', 'N/A')
expectedReceivingDate = trnHeaderAsn['expectedReceivingDate']
transactionStatus = trnHeaderAsn['transactionStatus']
shipper_code = party['shipper']['code'] if party['shipper'] else 'N/A'
shipper_name = party['shipper']['name'] if party['shipper'] else 'N/A'
# Assuming the variables are already defined as per previous context
data = [
["Transaction UID", transactionUid],
["Customer Order No", customerOrderNo],
["Order Date", orderDate],
["Customer Invoice No", customerInvoiceNo],
["Invoice Date", invoiceDate],
["Expected Receiving Date", expectedReceivingDate],
["Transaction Status", transactionStatus],
["Shipper Code", shipper_code],
["Shipper Name", shipper_name]
]
return f"The ASN details of {asn_id} is {data}."
else:
return "ASN Details are not found. Please contact system administrator."
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
except Exception as err:
print(f"An error occurred: {err}")
#get_weather_data("United Arab Emirates")
# Define the document data tool
def load_and_split_pdf(pdf_path):
reader = PdfReader(pdf_path)
text = ''
for page in reader.pages:
text += page.extract_text()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_text(text)
return texts
def create_vector_store(texts):
embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_texts(texts, embeddings)
return vector_store
def query_vector_store(vector_store, query):
docs = vector_store.similarity_search(query)
return '\n\n'.join([doc.page_content for doc in docs])
# Load and process the PDF (ensure the PDF is accessible from your Colab environment)
pdf_path = "Inbound.pdf"
texts = load_and_split_pdf(pdf_path)
vector_store = create_vector_store(texts)
def document_data_tool(query):
return query_vector_store(vector_store, query)
# Initialize the agent with the tools
tools = [
Tool(name="ASNData", func=get_ASN_data, description="Tool to get the status of ASN with ASN id given as input. Handles questions related to ASN id which starts with ASN followed by 11 numeric digits. For example, ASN24070100015 ", tool_choice="required"),
Tool(name="DocumentData", func=document_data_tool, description="Tool to search and retrieve information from the uploaded document. Provide responses with the maximum of 150 words.", tool_choice="required"),
Tool(name="DatabaseQuery", func=database_tool, description="Tool to query the database based on the user's question. Only handles questions related to the collegedb schema, including tables such as buildings, classrooms, college, course, faculty, interns, person, section, student, and textbook. Ensure to use only the available fields in these tables.Provide responses with the maximum of 150 words.", tool_choice="required"),
]
prompt_template = f"""You are an assistant that helps with database queries, ASN API information, and document retrieval.
For ASN-related questions, if the user specifies ASN id. Provide the information like ASN status, expected Receiving Date etc.
For document-related questions, search and retrieve information from the uploaded document.
For SQL database-related questions, only use the fields available in the collegedb schema, which includes tables such as buildings, classrooms, college, course, faculty, interns, person, section, student, and textbook.
{{agent_scratchpad}}
Question: {{input}}
"""
#{{memory.buffer}}
prompt = ChatPromptTemplate.from_template(prompt_template)
# Initialize the agent with memory
llm_with_memory = llm.bind(memory=memory)
agent = create_tool_calling_agent(llm_with_memory, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, memory= memory, verbose=True)
# Define the interface function
max_iterations = 5
iterations = 0
def answer_question(user_question):
global iterations
iterations = 0
while iterations < max_iterations:
response = agent_executor.invoke({"input": user_question})
if isinstance(response, dict):
response_text = response.get("output", "")
else:
response_text = response
if "invalid" not in response_text.lower():
break
iterations += 1
if iterations == max_iterations:
return "The agent could not generate a valid response within the iteration limit."
# Print memory buffer for debugging
print("Memory Buffer:", memory.buffer)
# Print memory buffer for debugging
print("Memory Buffer11:", memory.load_memory_variables({}))
# Format the response text
response_text = response_text.replace('\n', ' ').replace(' ', ' ').strip()
return response_text
# Create the Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs="text",
outputs="text",
title="Chat with your data",
description="Ask a question about the database or API or a document and get a response in natural language.",
)
# Launch the Gradio interface
iface.launch(share=True, debug=True)