Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
from open_flamingo import create_model_and_transforms
|
7 |
+
|
8 |
+
model, image_processor, tokenizer = create_model_and_transforms(
|
9 |
+
clip_vision_encoder_path="ViT-L-14",
|
10 |
+
clip_vision_encoder_pretrained="openai",
|
11 |
+
lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b",
|
12 |
+
tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b",
|
13 |
+
cross_attn_every_n_layers=1,
|
14 |
+
cache_dir="PATH/TO/CACHE/DIR" # Defaults to ~/.cache
|
15 |
+
)
|
16 |
+
|
17 |
+
# grab model checkpoint from huggingface hub
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
import torch
|
20 |
+
|
21 |
+
checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-3B-vitl-mpt1b", "checkpoint.pt")
|
22 |
+
model.load_state_dict(torch.load(checkpoint_path), strict=False)
|
23 |
+
|
24 |
+
from PIL import Image
|
25 |
+
import requests
|
26 |
+
import torch
|
27 |
+
|
28 |
+
"""
|
29 |
+
Step 1: Load images
|
30 |
+
"""
|
31 |
+
demo_image_one = Image.open(
|
32 |
+
requests.get(
|
33 |
+
"http://images.cocodataset.org/val2017/000000039769.jpg", stream=True
|
34 |
+
).raw
|
35 |
+
)
|
36 |
+
|
37 |
+
demo_image_two = Image.open(
|
38 |
+
requests.get(
|
39 |
+
"http://images.cocodataset.org/test-stuff2017/000000028137.jpg",
|
40 |
+
stream=True
|
41 |
+
).raw
|
42 |
+
)
|
43 |
+
|
44 |
+
query_image = Image.open(
|
45 |
+
requests.get(
|
46 |
+
"http://images.cocodataset.org/test-stuff2017/000000028352.jpg",
|
47 |
+
stream=True
|
48 |
+
).raw
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
"""
|
53 |
+
Step 2: Preprocessing images
|
54 |
+
Details: For OpenFlamingo, we expect the image to be a torch tensor of shape
|
55 |
+
batch_size x num_media x num_frames x channels x height x width.
|
56 |
+
In this case batch_size = 1, num_media = 3, num_frames = 1,
|
57 |
+
channels = 3, height = 224, width = 224.
|
58 |
+
Step 3: Preprocessing text
|
59 |
+
Details: In the text we expect an <image> special token to indicate where an image is.
|
60 |
+
We also expect an <|endofchunk|> special token to indicate the end of the text
|
61 |
+
portion associated with an image.
|
62 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
63 |
+
lang_x = tokenizer(
|
64 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
65 |
+
return_tensors="pt",
|
66 |
+
)
|
67 |
+
"""
|
68 |
+
|
69 |
+
"""
|
70 |
+
Step 4: Generate text
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
#print("Generated text: ", tokenizer.decode(generated_text[0]))
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
def predict_caption(image, prompt):
|
83 |
+
assert isinstance(prompt, str)
|
84 |
+
|
85 |
+
|
86 |
+
vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)]
|
87 |
+
vision_x = torch.cat(vision_x, dim=0)
|
88 |
+
vision_x = vision_x.unsqueeze(1).unsqueeze(0)
|
89 |
+
|
90 |
+
|
91 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
92 |
+
lang_x = tokenizer(
|
93 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
94 |
+
return_tensors="pt",
|
95 |
+
)
|
96 |
+
|
97 |
+
tokenizer.padding_side = "left" # For generation padding tokens should be on the left
|
98 |
+
lang_x = tokenizer(
|
99 |
+
["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"],
|
100 |
+
return_tensors="pt",
|
101 |
+
)
|
102 |
+
|
103 |
+
caption = tokenizer.decode(generated_text[0])
|
104 |
+
|
105 |
+
return caption
|
106 |
+
|
107 |
+
|
108 |
+
iface = gr.Interface(fn=predict_caption,
|
109 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")],
|
110 |
+
examples=examples,
|
111 |
+
outputs="text")
|
112 |
+
|
113 |
+
iface.launch()
|