Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update src/streamlit_app.py
Browse files- src/streamlit_app.py +17 -2
    	
        src/streamlit_app.py
    CHANGED
    
    | @@ -1,7 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 3 | 
             
            import torch
         | 
| 4 | 
            -
             | 
| 5 |  | 
| 6 | 
             
            # Load your model from Hugging Face Hub
         | 
| 7 | 
             
            model_name = "laiBatool/laiba-spam-classifier-bert"  # replace with your actual model repo name
         | 
| @@ -10,7 +25,7 @@ model_name = "laiBatool/laiba-spam-classifier-bert"  # replace with your actual | |
| 10 | 
             
            @st.cache_resource
         | 
| 11 | 
             
            def load_model():
         | 
| 12 |  | 
| 13 | 
            -
             | 
| 14 | 
             
                tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 15 | 
             
                model = AutoModelForSequenceClassification.from_pretrained(model_name)
         | 
| 16 | 
             
                return tokenizer, model
         | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Fix: Set Hugging Face cache to a writable directory
         | 
| 4 | 
            +
            os.environ["HF_HOME"] = "/tmp/huggingface"
         | 
| 5 | 
            +
            os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
         | 
| 6 | 
            +
            os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface"
         | 
| 7 | 
            +
            os.environ["HF_METRICS_CACHE"] = "/tmp/huggingface"
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Optional but safe
         | 
| 10 | 
            +
            os.makedirs("/tmp/huggingface", exist_ok=True)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
             
            import streamlit as st
         | 
| 17 | 
             
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 18 | 
             
            import torch
         | 
| 19 | 
            +
             | 
| 20 |  | 
| 21 | 
             
            # Load your model from Hugging Face Hub
         | 
| 22 | 
             
            model_name = "laiBatool/laiba-spam-classifier-bert"  # replace with your actual model repo name
         | 
|  | |
| 25 | 
             
            @st.cache_resource
         | 
| 26 | 
             
            def load_model():
         | 
| 27 |  | 
| 28 | 
            +
             
         | 
| 29 | 
             
                tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 30 | 
             
                model = AutoModelForSequenceClassification.from_pretrained(model_name)
         | 
| 31 | 
             
                return tokenizer, model
         |