Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
|
5 |
+
# Cargamos el learner
|
6 |
+
learn = load_learner('export.pkl')
|
7 |
+
|
8 |
+
# Definimos las etiquetas de nuestro modelo
|
9 |
+
labels = ["0","1","2","3"]
|
10 |
+
|
11 |
+
|
12 |
+
# Definimos una función que se encarga de llevar a cabo las predicciones
|
13 |
+
def predict(string):
|
14 |
+
print(learn.predict(string))
|
15 |
+
pred,pred_idx,probs = learn.predict(string)
|
16 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
17 |
+
|
18 |
+
# Creamos la interfaz y la lanzamos.
|
19 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Textbox(lines=1), outputs=gr.outputs.Label(num_top_classes=3),examples=['it was so annoying to watch the president','I am so glad to see you'], title="Natural Language Model to classify the feelings of a message", description="This model has been trained with messages obtained from Twitter. Its purpose is to classify the possible feelings that a message might express. The labels obtained have the following meaning:\n 0: anger\n 1: joy\n 2: optimism\n 3: sadness").launch(share=False)
|