kn / infer.py
lafi23333's picture
Upload 191 files
9b1761d
raw
history blame
10.8 kB
"""
版本管理、兼容推理及模型加载实现。
版本说明:
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
特殊版本说明:
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
1.1.1-dev: dev开发
2.1:当前版本
"""
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from get_emo import get_emo
from text.cleaner import clean_text
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
from oldVersion.V200.text import symbols as V200symbols
from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
from oldVersion.V111.text import symbols as V111symbols
from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
from oldVersion.V110.text import symbols as V110symbols
from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
from oldVersion.V101.text import symbols as V101symbols
from oldVersion import V111, V110, V101, V200
# 当前版本信息
latest_version = "2.1"
# 版本兼容
SynthesizerTrnMap = {
"2.0.2-fix": V200SynthesizerTrn,
"2.0.1": V200SynthesizerTrn,
"2.0": V200SynthesizerTrn,
"1.1.1-fix": V111SynthesizerTrn,
"1.1.1": V111SynthesizerTrn,
"1.1": V110SynthesizerTrn,
"1.1.0": V110SynthesizerTrn,
"1.0.1": V101SynthesizerTrn,
"1.0": V101SynthesizerTrn,
"1.0.0": V101SynthesizerTrn,
}
symbolsMap = {
"2.0.2-fix": V200symbols,
"2.0.1": V200symbols,
"2.0": V200symbols,
"1.1.1-fix": V111symbols,
"1.1.1": V111symbols,
"1.1": V110symbols,
"1.1.0": V110symbols,
"1.0.1": V101symbols,
"1.0": V101symbols,
"1.0.0": V101symbols,
}
def get_net_g(model_path: str, version: str, device: str, hps):
if version != latest_version:
net_g = SynthesizerTrnMap[version](
len(symbolsMap[version]),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
else:
# 当前版本模型 net_g
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device):
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "JP":
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == "EN":
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def get_emo_(reference_audio, emotion):
emo = (
torch.from_numpy(get_emo(reference_audio))
if reference_audio
else torch.Tensor([emotion])
)
return emo
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
# 支持中日英三语版本
inferMap_V2 = {
"2.0.2-fix": V200.infer,
"2.0.1": V200.infer,
"2.0": V200.infer,
"1.1.1-fix": V111.infer_fix,
"1.1.1": V111.infer,
"1.1": V110.infer,
"1.1.0": V110.infer,
}
# 仅支持中文版本
# 在测试中,并未发现两个版本的模型不能互相通用
inferMap_V1 = {
"1.0.1": V101.infer,
"1.0": V101.infer,
"1.0.0": V101.infer,
}
version = hps.version if hasattr(hps, "version") else latest_version
# 非当前版本,根据版本号选择合适的infer
if version != latest_version:
if version in inferMap_V2.keys():
return inferMap_V2[version](
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
)
if version in inferMap_V1.keys():
return inferMap_V1[version](
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
hps,
net_g,
device,
)
# 在此处实现当前版本的推理
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text, language, hps, device
)
emo = get_emo_(reference_audio, emotion)
if skip_start:
phones = phones[1:]
tones = tones[1:]
lang_ids = lang_ids[1:]
bert = bert[:, 1:]
ja_bert = ja_bert[:, 1:]
en_bert = en_bert[:, 1:]
if skip_end:
phones = phones[:-1]
tones = tones[:-1]
lang_ids = lang_ids[:-1]
bert = bert[:, :-1]
ja_bert = ja_bert[:, :-1]
en_bert = en_bert[:, :-1]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
emo = get_emo_(reference_audio, emotion)
for idx, (txt, lang) in enumerate(zip(text, language)):
skip_start = (idx != 0) or (skip_start and idx == 0)
skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, lang, hps, device)
if skip_start:
temp_bert = temp_bert[:, 1:]
temp_ja_bert = temp_ja_bert[:, 1:]
temp_en_bert = temp_en_bert[:, 1:]
temp_phones = temp_phones[1:]
temp_tones = temp_tones[1:]
temp_lang_ids = temp_lang_ids[1:]
if skip_end:
temp_bert = temp_bert[:, :-1]
temp_ja_bert = temp_ja_bert[:, :-1]
temp_en_bert = temp_en_bert[:, :-1]
temp_phones = temp_phones[:-1]
temp_tones = temp_tones[:-1]
temp_lang_ids = temp_lang_ids[:-1]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio