Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') | |
| import torch | |
| import commons | |
| import utils | |
| from models import SynthesizerTrn | |
| from text.symbols import symbols | |
| from text import text_to_sequence | |
| def get_text(text, hps): | |
| text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
| if hps.data.add_blank: | |
| text_norm = commons.intersperse(text_norm, 0) | |
| text_norm = torch.LongTensor(text_norm) | |
| return text_norm | |
| hps = utils.get_hparams_from_file("configs/config.json") | |
| net_g = SynthesizerTrn( | |
| len(symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| **hps.model) | |
| _ = net_g.eval() | |
| # _ = utils.load_checkpoint("logs/woman_csmsc/G_100000.pth", net_g, None) | |
| _ = utils.load_checkpoint("G_98000.pth", net_g, None) | |
| def vc_fn(input): | |
| stn_tst = get_text(input, hps) | |
| with torch.no_grad(): | |
| x_tst = stn_tst.unsqueeze(0) | |
| x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
| # x_tst = stn_tst.cpu().unsqueeze(0) | |
| # x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cpu() | |
| audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() | |
| sampling_rate = 44100 | |
| return (sampling_rate, audio) | |
| app = gr.Blocks() | |
| with app: | |
| with gr.Tabs(): | |
| with gr.TabItem("Basic"): | |
| vc_input = gr.Textbox(label="Input Message") | |
| vc_submit = gr.Button("Convert", variant="primary") | |
| vc_output = gr.Audio(label="Output Audio") | |
| vc_submit.click(vc_fn, [ vc_input], [vc_output]) | |
| app.launch() |