|
from transformers import Wav2Vec2Config, Wav2Vec2Model |
|
from transformers.modeling_outputs import BaseModelOutput |
|
|
|
from .torch_utils import linear_interpolation |
|
|
|
|
|
|
|
|
|
class Wav2Vec2Model(Wav2Vec2Model): |
|
def __init__(self, config: Wav2Vec2Config): |
|
super().__init__(config) |
|
|
|
def forward( |
|
self, |
|
input_values, |
|
seq_len, |
|
attention_mask=None, |
|
mask_time_indices=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
self.config.output_attentions = True |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
extract_features = linear_interpolation(extract_features, seq_len=seq_len) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask( |
|
extract_features.shape[1], attention_mask, add_adapter=False |
|
) |
|
|
|
hidden_states, extract_features = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states( |
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.adapter is not None: |
|
hidden_states = self.adapter(hidden_states) |
|
|
|
if not return_dict: |
|
return (hidden_states, ) + encoder_outputs[1:] |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
def feature_extract( |
|
self, |
|
input_values, |
|
seq_len, |
|
): |
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
extract_features = linear_interpolation(extract_features, seq_len=seq_len) |
|
|
|
return extract_features |
|
|
|
def encode( |
|
self, |
|
extract_features, |
|
attention_mask=None, |
|
mask_time_indices=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
self.config.output_attentions = True |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask( |
|
extract_features.shape[1], attention_mask, add_adapter=False |
|
) |
|
|
|
|
|
hidden_states, extract_features = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states( |
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.adapter is not None: |
|
hidden_states = self.adapter(hidden_states) |
|
|
|
if not return_dict: |
|
return (hidden_states, ) + encoder_outputs[1:] |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|