|
|
|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import bisect |
|
import shutil |
|
import pdb |
|
from tqdm import tqdm |
|
|
|
def init_frame_interpolation_model(): |
|
print("Initializing frame interpolation model") |
|
checkpoint_name = os.path.join("./pretrained_model/film_net_fp16.pt") |
|
|
|
model = torch.jit.load(checkpoint_name, map_location='cpu') |
|
model.eval() |
|
model = model.half() |
|
model = model.to(device="cuda") |
|
return model |
|
|
|
|
|
def batch_images_interpolation_tool(input_tensor, model, inter_frames=1): |
|
|
|
video_tensor = [] |
|
frame_num = input_tensor.shape[2] |
|
|
|
for idx in tqdm(range(frame_num-1)): |
|
image1 = input_tensor[:,:,idx] |
|
image2 = input_tensor[:,:,idx+1] |
|
|
|
results = [image1, image2] |
|
|
|
inter_frames = int(inter_frames) |
|
idxes = [0, inter_frames + 1] |
|
remains = list(range(1, inter_frames + 1)) |
|
|
|
splits = torch.linspace(0, 1, inter_frames + 2) |
|
|
|
for _ in range(len(remains)): |
|
starts = splits[idxes[:-1]] |
|
ends = splits[idxes[1:]] |
|
distances = ((splits[None, remains] - starts[:, None]) / (ends[:, None] - starts[:, None]) - .5).abs() |
|
matrix = torch.argmin(distances).item() |
|
start_i, step = np.unravel_index(matrix, distances.shape) |
|
end_i = start_i + 1 |
|
|
|
x0 = results[start_i] |
|
x1 = results[end_i] |
|
|
|
x0 = x0.half() |
|
x1 = x1.half() |
|
x0 = x0.cuda() |
|
x1 = x1.cuda() |
|
|
|
dt = x0.new_full((1, 1), (splits[remains[step]] - splits[idxes[start_i]])) / (splits[idxes[end_i]] - splits[idxes[start_i]]) |
|
|
|
with torch.no_grad(): |
|
prediction = model(x0, x1, dt) |
|
insert_position = bisect.bisect_left(idxes, remains[step]) |
|
idxes.insert(insert_position, remains[step]) |
|
results.insert(insert_position, prediction.clamp(0, 1).cpu().float()) |
|
del remains[step] |
|
|
|
for sub_idx in range(len(results)-1): |
|
video_tensor.append(results[sub_idx].unsqueeze(2)) |
|
|
|
video_tensor.append(input_tensor[:,:,-1].unsqueeze(2)) |
|
video_tensor = torch.cat(video_tensor, dim=2) |
|
return video_tensor |