responsibleGPT / app.py
kyleledbetter's picture
feat(app): support more models and datasets
0ec25a0
raw
history blame
No virus
12.4 kB
import gradio as gr
import requests
import json
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
from datasets import load_dataset
import datasets
import plotly.io as pio
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
from sklearn.metrics import confusion_matrix
import importlib
import torch
from dash import Dash, html, dcc
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
def load_model(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
if model_type == "text_classification":
dataset = load_dataset(dataset_name, config_name)
num_labels = len(dataset["train"].features["label"].names)
if "roberta" in model_name_or_path.lower():
from transformers import RobertaForSequenceClassification
model = RobertaForSequenceClassification.from_pretrained(
model_name_or_path, num_labels=num_labels)
else:
model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path, num_labels=num_labels)
elif model_type == "token_classification":
dataset = load_dataset(dataset_name, config_name)
num_labels = len(
dataset["train"].features["ner_tags"].feature.names)
model = AutoModelForTokenClassification.from_pretrained(
model_name_or_path, num_labels=num_labels)
elif model_type == "question_answering":
model = AutoModelForQuestionAnswering.from_pretrained(model_name_or_path)
else:
raise ValueError(f"Invalid model type: {model_type}")
return tokenizer, model
def test_model(tokenizer, model, test_data: list, label_map: dict):
results = []
for text, _, true_label in test_data:
inputs = tokenizer(text, return_tensors="pt",
truncation=True, padding=True)
outputs = model(**inputs)
pred_label = label_map[int(outputs.logits.argmax(dim=-1))]
results.append((text, true_label, pred_label))
return results
def generate_label_map(dataset):
if "label" not in dataset.features or dataset.features["label"] is None:
return {}
if isinstance(dataset.features["label"], datasets.ClassLabel):
num_labels = dataset.features["label"].num_classes
label_map = {i: label for i, label in enumerate(dataset.features["label"].names)}
else:
num_labels = len(set(dataset["label"]))
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
return label_map
def calculate_fairness_score(results, label_map):
true_labels = [r[1] for r in results]
pred_labels = [r[2] for r in results]
# Overall accuracy
# accuracy = (true_labels == pred_labels).mean()
accuracy = accuracy_score(true_labels, pred_labels)
# Calculate confusion matrix for each group
group_names = label_map.values()
group_cms = {}
for group in group_names:
true_group_indices = [i for i, label in enumerate(true_labels) if label == group]
pred_group_labels = [pred_labels[i] for i in true_group_indices]
true_group_labels = [true_labels[i] for i in true_group_indices]
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
group_cms[group] = cm
# Calculate fairness score
score = 0
for i, group1 in enumerate(group_names):
for j, group2 in enumerate(group_names):
if i < j:
cm1 = group_cms[group1]
cm2 = group_cms[group2]
diff = np.abs(cm1 - cm2)
score += (diff.sum() / 2) / cm1.sum()
return accuracy, score
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
unique_labels = sorted(label_map.values())
metrics = []
if metric == 'accuracy':
for label in unique_labels:
label_indices = [i for i, true_label in enumerate(true_labels) if true_label == label]
true_label_subset = [true_labels[i] for i in label_indices]
pred_label_subset = [pred_labels[i] for i in label_indices]
accuracy = accuracy_score(true_label_subset, pred_label_subset)
metrics.append(accuracy)
elif metric == 'f1':
f1_scores = f1_score(true_labels, pred_labels, labels=unique_labels, average=None)
metrics = f1_scores.tolist()
else:
raise ValueError(f"Invalid metric: {metric}")
return metrics
def generate_visualization(visualization_type, results, label_map):
true_labels = [r[1] for r in results]
pred_labels = [r[2] for r in results]
if visualization_type == "confusion_matrix":
return generate_report_card(results, label_map)["fig"]
elif visualization_type == "per_class_accuracy":
per_class_accuracy = calculate_per_class_metrics(
true_labels, pred_labels, label_map, metric='accuracy')
colors = px.colors.qualitative.Plotly
fig = go.Figure()
for i, label in enumerate(label_map.values()):
fig.add_trace(go.Bar(
x=[label],
y=[per_class_accuracy[i]],
name=label,
marker_color=colors[i % len(colors)]
))
fig.update_layout(title='Per-Class Accuracy',
xaxis_title='Class', yaxis_title='Accuracy')
return fig
elif visualization_type == "per_class_f1":
per_class_f1 = calculate_per_class_metrics(
true_labels, pred_labels, label_map, metric='f1')
colors = px.colors.qualitative.Plotly
fig = go.Figure()
for i, label in enumerate(label_map.values()):
fig.add_trace(go.Bar(
x=[label],
y=[per_class_f1[i]],
name=label,
marker_color=colors[i % len(colors)]
))
fig.update_layout(title='Per-Class F1-Score',
xaxis_title='Class', yaxis_title='F1-Score')
return fig
else:
raise ValueError(f"Invalid visualization type: {visualization_type}")
def generate_report_card(results, label_map):
true_labels = [r[1] for r in results]
pred_labels = [r[2] for r in results]
cm = confusion_matrix(true_labels, pred_labels,
labels=list(label_map.values()))
# Create the plotly figure
fig = make_subplots(rows=1, cols=1)
fig.add_trace(go.Heatmap(
z=cm,
x=list(label_map.values()),
y=list(label_map.values()),
colorscale='RdYlGn',
colorbar=dict(title='# of Samples')
))
fig.update_layout(
height=500, width=600,
title='Confusion Matrix',
xaxis=dict(title='Predicted Labels'),
yaxis=dict(title='True Labels', autorange='reversed')
)
# Create the text output
# accuracy = pd.Series(true_labels) == pd.Series(pred_labels)
accuracy = accuracy_score(true_labels, pred_labels, normalize=False)
fairness_score = calculate_fairness_score(results, label_map)
per_class_accuracy = calculate_per_class_metrics(
true_labels, pred_labels, label_map, metric='accuracy')
per_class_f1 = calculate_per_class_metrics(
true_labels, pred_labels, label_map, metric='f1')
text_output = html.Div(children=[
html.H2('Performance Metrics'),
html.Div(children=[
html.Div(children=[
html.H3('Accuracy'),
html.H4(f'{accuracy}')
], className='metric'),
html.Div(children=[
html.H3('Fairness Score'),
# html.H4(f'{fairness_score}')
html.H4(
f'Accuracy: {fairness_score[0]:.2f}, Score: {fairness_score[1]:.2f}')
], className='metric'),
], className='metric-container'),
], className='text-output')
# Combine the plot and text output into a Dash container
# report_card = html.Div([
# dcc.Graph(figure=fig),
# text_output,
# ])
# return report_card
report_card = {
"fig": fig,
"accuracy": accuracy,
"fairness_score": fairness_score,
"per_class_accuracy": per_class_accuracy,
"per_class_f1": per_class_f1
}
return report_card
# return fig, text_output
def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int, visualization_type: str):
tokenizer, model = load_model(
model_type, model_name_or_path, dataset_name, config_name)
# Load the dataset
# Add this line to cast num_samples to an integer
num_samples = int(num_samples)
dataset = load_dataset(
dataset_name, config_name, split=f"{dataset_split}[:{num_samples}]")
test_data = []
if dataset_name == "glue":
test_data = [(item["sentence"], None,
dataset.features["label"].names[item["label"]]) for item in dataset]
elif dataset_name == "tweet_eval":
test_data = [(item["text"], None, dataset.features["label"].names[item["label"]])
for item in dataset]
else:
test_data = [(item["sentence"], None,
dataset.features["label"].names[item["label"]]) for item in dataset]
# if model_type == "text_classification":
# for item in dataset:
# text = item["sentence"]
# context = None
# true_label = item["label"]
# test_data.append((text, context, true_label))
# elif model_type == "question_answering":
# for item in dataset:
# text = item["question"]
# context = item["context"]
# true_label = None
# test_data.append((text, context, true_label))
# else:
# raise ValueError(f"Invalid model type: {model_type}")
label_map = generate_label_map(dataset)
results = test_model(tokenizer, model, test_data, label_map)
# fig, text_output = generate_report_card(results, label_map)
# return fig, text_output
report_card = generate_report_card(results, label_map)
visualization = generate_visualization(visualization_type, results, label_map)
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
return (f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}\n\n"
f"Per-Class Metrics:\n{per_class_metrics_str}"), visualization
interface = gr.Interface(
fn=app,
inputs=[
gr.inputs.Radio(["text_classification", "token_classification",
"question_answering"], label="Model Type", default="text_classification"),
gr.inputs.Textbox(lines=1, label="Model Name or Path",
placeholder="ex: distilbert-base-uncased-finetuned-sst-2-english", default="distilbert-base-uncased-finetuned-sst-2-english"),
gr.inputs.Textbox(lines=1, label="Dataset Name",
placeholder="ex: glue", default="glue"),
gr.inputs.Textbox(lines=1, label="Config Name",
placeholder="ex: sst2", default="cola"),
gr.inputs.Dropdown(
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
gr.inputs.Number(default=100, label="Number of Samples"),
gr.inputs.Dropdown(
choices=["confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="confusion_matrix"
),
],
# outputs=gr.Plot(),
# outputs=gr.outputs.HTML(),
# outputs=[gr.outputs.HTML(), gr.Plot()],
outputs=[
gr.outputs.Textbox(label="Fairness and Bias Metrics"),
gr.Plot(label="Graph")
],
title="Fairness and Bias Testing",
description="Enter a model and dataset to test for fairness and bias.",
)
# Define the label map globally
label_map = {0: "negative", 1: "positive"}
if __name__ == "__main__":
interface.launch()