x_Ray_classification_docker / xray_classifier.py
kyanmahajan's picture
Update xray_classifier.py
61118e0 verified
import torch
import torch.nn as nn
from torchvision import models, transforms
from flask import Flask, jsonify, request
from PIL import Image
import io
from flask_cors import CORS
# --------------------------
# Flask setup
# --------------------------
app = Flask(__name__)
CORS(app)
# --------------------------
# Device setup
# --------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --------------------------
# Transform setup (same as training)
# --------------------------
data_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# --------------------------
# Model setup
# --------------------------
model = models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load("resnet18_brain_tumor.pth", map_location=device))
model.to(device)
model.eval()
class_names = ["wound", "brain", "lung"]
# --------------------------
# Predict route
# --------------------------
@app.route("/predict_classify", methods=["POST"])
def predict():
if "file" not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files["file"]
try:
# Load image directly from memory (no saving)
image_bytes = file.read()
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Transform and prepare input
input_tensor = data_transforms(image).unsqueeze(0).to(device)
# Model inference
with torch.no_grad():
outputs = model(input_tensor)
pred_idx = torch.argmax(outputs, dim=1).item()
pred_label = class_names[pred_idx]
return jsonify({
"prediction": pred_label
})
except Exception as e:
return jsonify({"error": str(e)}), 500
# --------------------------
# Run server
# --------------------------
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=7860)